

Getting to 80% GHG Reductions
Through Electricity and Fuels Strategies

Jeffery Greenblatt

Lawrence Berkeley National Laboratory

Presentation to CARB, CEC and CPUC staff CalEPA Building, Sacramento, CA 15 July 2011

Demand

Strategies for Getting to 80%

		GHG Impact
1.	100% effective CCS	Small
2.	Eliminate fossil/CCS (use nuclear instead)	Jiliali
3.	100% ZELB for load balancing	
4.	Net-zero GHG biomass	
5.	Behavior Change (10% reduction in demand)	Moderate
6.	Biomass/CCS (20% of electricity, offsets fuels)	
7.	Hydrogen (30% replacement of HC fuels)	
8.	Biomass/Coal/CCS (make fuels + electricity)	Laura
9.	Double biomass supply	Large
10.	Fuel from sunlight (need net-zero carbon source	e)
11.	Fusion electricity	′ Trans-
12.	Others?	formative

Getting to 80%: Single Strategies from the Median Case

100% Effective CCS?

Capture technology	Main constituents	CO ₂ capture limit
Post-combustion	CO ₂ (dilute), N ₂ , O ₂ , H ₂ O	~90%
IGCC pre-combustion	CO ₂ , CO, CH ₄ , H ₂ S	~92%
Oxyfuel combustion	CO ₂ , O ₂ , H ₂ O	96-99%

Conclusions:

- >90% capture is costly, >95% is very costly
- 100% capture is unlikely without breakthroughs
- Would not save much CO₂ in median case (6 MtCO₂/yr)

But:

• Important incremental savings in CCS-heavy cases (fossil/CCS, biomass/CCS, biomass/coal/CCS, Nat. gas H₂)

Elimination of CCS

- Slightly greater CO₂ savings than 100% CCS (due to reduced refining emissions), <u>but</u>:
- CCS is probably needed for more than fossil electricity production, so unlikely to eliminate, unless technically- or cost-prohibitive

100% Zero-Emission Load Balancing

Questions:

- How much ZELB is actually required for each scenario?
- How much flexible load capacity is there, and at what cost? What can spur adoption & investment?
- Energy storage is likely to be "backstop" technology, unless costs beat spinning reserves and/or peak generation with natural gas. Are current RD&D investments sufficient?
- Can storage efficiency be increased?
- How do we solve the "GW-day" problem?
- Can gas turbines be cost-effective with CCS?

Net Zero GHG Biomass

- Can lifecycle costs be reduced to zero?
- 22 MtCO₂/yr savings over median case
- Important to reduce net emissions from where they are today (>50% of fossil fuels), but not so critical to reduce below ~20%.
- Research questions:
 - Can we produce a cost curve for net GHG biomass emissions?
 - Given other energy component strategies, what is a reasonable net GHG biomass target?

Behavior Change

- Many behaviors identified to reduce energy use in the 10-20% range:
 - Greater extremes in variables, including building & water temperatures, light levels, moisture content, etc.
 - Right-sizing of homes, appliance capacities, etc.
 - Trading time for convenience, e.g., "smart" wash cycles
 - More use of manual/"natural" effort, e.g., manual egg beaters, air-drying clothing, playing the guitar instead of watching TV, biking vs. driving
 - Lifestyle decisions regarding location, degree of privacy (detached vs. shared home), car ownership/use (big impact on transportation energy)
- Technology-enablers important, such as room dependent space conditioning and occupancy sensors
- 24 MtCO₂/yr savings from median case with ~10% demand reduction

Behavior Change

- New research (CEC grant to LBNL) finds that:
 - Behaviors targeting fuel use (e.g., transportation) have larger GHG savings, so policy may choose to focus on these
- Industrial "behavior":
 - Less raw materials to produce the same products
 - More integrated products to reduce total number produced
 - Longer-lasting products; longer product design cycles
 - Design for ease of recycling or re-use
 - Use of less energy-intensive materials (e.g., composite replacements for steel); minimize packaging
 - Change from consumer ownership to rental/service model

Hydrogen

- CEF assessment of primary roles for H₂:
 - Light-duty vehicles (22%)
 - Some heavy-duty transport (9% trucks, 100% buses)
 - Industrial heat (21%)
- Production options:
 - Electrolysis: very expensive, unless done at high-temperature
 - Thermochemical from coal or natural gas with CCS
- 40 MtCO₂/yr savings over median case
- Research questions:
 - When is hydrogen "better" than electrification or biofuels?
 - Can hydrogen be used in heavy-duty transporation, e.g., airplanes (Jacobson & Delucchi, EnPol, 2011)?

Biomass and Coal with CCS

94 mdt/yr biomass → 12-15 bgge/yr fuels 56 MtCO₂/yr savings

Central Role of CCS

- Huge enabler of:
 - Fossil electricity, including possibly natural gas turbines
 - Biomass electricity to offset fossil fuel in transport
 - Fuel production from biomass + fossil
 - Hydrogen production
- Research needs:
 - Legal resolution of CO₂ responsibility (federal issue?)
 - Resource assessment in oil/gas reservoirs & saline aquifers, both inside and outside CA
 - Economic assessment of best role & locations for CCS
 - Membrane capture, IGCC, oxyfuel technologies
 - Pilot plants needed (2 PIER-funded projects underway)
 - Value of >90% capture?

Doubling Biomass Supply

Median case

Doubling Biomass Supply

Where could this land come from?

- Abandoned crop + unproductive timber land
- Increased recovery of existing waste streams

Doubling Biomass Supply

Advanced Technologies

- Fuel from sunlight
 - Would relieve biomass resource constraint
 - Probably necessary if CCS fails or is too expensive
- Fusion
 - Would it really produce cheaper electricity? If so, how would solutions change (e.g., cheap electrolysis)?
 - Might be better baseload solution than nuclear fission, fossil/CCS or geothermal
- What else could help?

Conclusions

- 80% solutions are achievable with technical (and for behavior, social) innovation
- Multiple strategies are probably needed
- Key uncertainties/challenges:
 - Biofuels are uncertain, and greatly expanded supplies would change nature of solution
 - CCS is an important enabling technology; will it work at scale?
 - How should hydrogen best be used?
 - Load balancing without emissions needed (storage and flexible loads), particularly for renewables
- Further research needed:
 - Biomass/CCS for electricity
 - Biomass/Coal/CCS for fuels
 - Fuel from sunlight (and possibly fusion)