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This section provides a brief introduction to petroleum systems, followed by a review 
of key hydrocarbon source rocks (typically shales) associated with petroleum systems 
found within onshore California sedimentary basins. Key aspects of the geology will 
also be discussed, such as the tectonic and structural features that have affected basin 
development and diagenetic processes impacting the types of minerals formed and rock 
properties. Where available, data describing the rock properties will be summarized. 
This is followed by a brief description of the Bakken Formation in the Williston Basin, 
from which significant unconventional shale oil production is occurring in North Dakota, 
along with a comparison with the Monterey Formation in California. This is followed by 
descriptions of the major sedimentary basins in California, along with a discussion of the 
results of exploration activities in deep portions of these basins, where hydrocarbon  
source rocks are within the oil window. The section concludes with some general 
observations regarding the potential application of unconventional techniques to  
oil-bearing shales in California.

4.1 Overview of Significant Findings

Oil-bearing sedimentary basins in California are relatively young in geologic time, but  
are structurally complex due to the presence of a very dynamic transform plate boundary, 
currently represented by the San Andreas Fault System. The dominant source rock for 
hydrocarbon generation in many of these basins is the Monterey Formation, a thick 
Miocene age sequence of marine sediments consisting of siliceous, phosphatic, organic, 
and clay-rich shales and mudstones, dolomites, and intercalated turbiditic sandstones. 
Most oil fields in California are located in reservoirs associated with structural traps at 
depths above where the oil is actively generated (the oil window), indicating that the oil 
in these petroleum systems has migrated from the source rocks to the reservoirs. While 
there have been few new onshore oil discoveries in the past two decades (the 30 largest 
onshore oil fields in California were all discovered prior to 1950; California Division of 
Oil, Gas and Geothermal Resources (DOGGR), 2010), the United States Geological Survey 
(USGS) has recently estimated that almost 10 billion barrels of oil can be recovered using 
existing technologies (including well stimulation methods) from the largest existing 
oil fields in the San Joaquin and Los Angeles Basins (Tennyson et al., 2012; Gautier et 
al., 2013). Much of the current well stimulation in California has occurred in diatomite 
reservoirs in the Monterey Formation (see Sections 2 and 4.5.2 for more details), and it is 
likely that this type of reservoir rock will continue to be a focus of future well stimulation 
activity in California. 
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Technological advances in well completion and stimulation techniques have led to dramatic  
increases in oil recovery from shale oil deposits elsewhere in the United States. Based in 
part on large increases in drilling and oil production in the Bakken Formation in North 
Dakota and the Eagle Ford Formation in Texas, the US Energy Information Administration 
(EIA) (2011) predicted that even larger oil resources could be tapped from the deeper 
portions (the active source rock) of the Monterey Formation in California, estimating that 
there are 15.4 billion barrels of technically recoverable oil. However, the assumptions 
used to develop this estimate are not supported by historical well production rates in the 
Monterey (Hughes, 2013), suggesting that this estimate is highly inflated, and a more 
recent estimate by the US EIA (2014b) has reduced the estimated unproved technically 
recoverable shale oil from the Monterey/Santos play to a value of 0.6 billion barrels. 
Recent exploration wells that have targeted deeper portions of the Monterey, where active 
source rocks may retain unmigrated oil, have not resulted in the identification of new oil 
reserves to date. The potential of discovering significant oil resources from new plays in 
the deep source rocks of the Monterey is highly uncertain. 

4.2 Introduction to Oil Deposits

Petroleum systems require the following key elements: a source rock that contains sufficient  
concentrations of organic matter, a reservoir rock that accumulates the generated oil and 
gas, a seal rock that traps the hydrocarbons in the reservoir, and overburden rock that 
provides the burial depths needed for oil generation to occur (e.g., Doust, 2010; Magoon 
and Dow, 1994). The generation of hydrocarbons in the source rock requires the presence 
of abundant organic matter; the organic matter is transformed into oil and gas over time 
when subjected to sufficient pressure and temperature, which are related to sediment 
burial depth. The migration of hydrocarbons into the reservoir requires transport pathways 
and sufficient time. The reservoir must have a relatively impermeable barrier or “trap” so 
that oil can accumulate in commercial quantities without escaping, as shown on Figure 
4-1. A variety of trapping mechanisms is possible, including stratigraphic traps (where  
an impermeable formation overlies a porous and permeable reservoir rock), structural 
traps (faults or folds that form a barrier to the continued upward migration of buoyant 
hydrocarbons), and diagenetic traps (where the alteration of the reservoir rocks associated 
with burial and fluid flow causes changes in flow properties of the rock).

Insoluble organic matter in the source rock (kerogen) must undergo sufficient maturation 
through burial and heating over time for oil and gas to be generated (McCarthy et al., 
2011). The “oil window” is defined as the range of depths for which a source rock, 
having undergone burial and heating, will generate oil – this is a function of the type of 
organic matter and the integrated time-temperature history of the source rock (Fig. 4-2). 
This process is characterized by progressive changes in vitrinite reflectance. Vitrinite is 
a type of woody kerogen (a type of insoluble organic matter) that changes predictably 
and consistently upon heating, and its increased reflectance indicates increasing source 
rock maturity. The top of the oil window (where oil first is generated) corresponds to 
temperatures of around 50°C and a vitrinite reflectance (Ro) of 0.6 (although some 
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workers suggest that oil generation in some of the California basins is initiated at lower 
vitrinite maturity levels (Walker et al., 1983; Petersen and Hickey, 1987). Higher levels of 
heating will result in the transformation of organic matter to natural gas; the base of the oil 
window (where all hydrocarbons will be transformed into gas) corresponds to a vitrinite 
reflectance of ~1.2. The depth to the top of the oil window depends on the burial and 
thermal histories of the basin. Oil can be traced back to its source rock through the use of 
biomarkers and stable isotopic compositions, which serve as chemical fingerprints that link 
it to the organic matter (kerogen) from which it was generated (Kruge, 1986; McCarthy et 
al., 2011; Peters et al., 2007; 2013).

Figure 4-1. Example of a hypothetical petroleum system showing plan view map, cross section, 

and timeline for system formation. Figure taken from Doust (2010), which was modified from 

Magoon and Dow (1994).

In the case of an unconventional shale oil system, the source rock also serves as the 
reservoir rock, because the oil stays trapped within the source rock due to its low 
permeability. Producing oil from low permeability source rocks requires reservoir 
stimulation techniques such as those discussed in Section 2.



122

Chapter 4: Prospective Application of Well Stimulation Technologies in California

Figure 4-2. Thermal transformation of kerogen to oil and gas, depicting the location of the oil 

window (McCarthy et al., 2011).

There are three general categories of prospective target areas for oil production in 
California involving well stimulation. The first target consists of continued or increased 
oil production from discovered oil fields (or similar undiscovered reservoirs) that 
produce from formations with low permeability (also known as tight oil formations). 
The producing oil reservoirs in these fields generally lie above the oil window, indicating 
that the oil has migrated upwards from deeper source rocks and is now contained by 
structural, stratigraphic, and/or diagenetic traps, as shown on Figure 4-3. The largest 
fields in California, situated in the San Joaquin and Los Angeles Basins, have produced 
billions of barrels of oil, and the USGS estimates that there are over 9 billion barrels of 
additional oil that could be recovered from these two basins using current technology, 
which might include well stimulation technologies such as hydraulic fracturing (Gautier 
et al., 2013; Tennyson et al., 2012). Of these producing fields, many have oil sourced 
from the Miocene Monterey Formation (or Monterey Formation-equivalent rocks), a 
formation that contains organic, siliceous, phosphatic, and clay-rich shales, diatomites, 
and dolomites (Section 4.4.1). A significant fraction of these fields also have oil reservoirs 
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in the Monterey Formation, often hosted in diatomites, fractured siliceous shales, or 
in interbedded sandy turbidite deposits; the oil has migrated from the deeper active 
source rock into shallower reservoirs with overlying seals. To date, most of the hydraulic 
fracturing well stimulation activity in California has been in the Monterey Formation 
diatomites in South Belridge, Lost Hills, and Elk Hills fields of the San Joaquin Basin 
(Agiddi, 2004; Martinez et al., 1994; Rowe et al., 2004; Strubhar et al., 1984; Wright 
et al., 1995). It is possible that hydraulic fracturing well stimulation methods, or others 
adapted from unconventional shale oil production in other regions, could be applied more 
widely in the Monterey Formation to increase oil recovery and production.

Figure 4-3. Cross section depicting the Antelope-Stevens Petroleum System in the southern San 

Joaquin Valley (Magoon et al., 2009). The Antelope Shale and Stevens Sand are subunits of the 

Monterey Formation. Note that the bulk of the oil fields are located on the margins of the basin, 

and that the oil appears to have migrated updip from the source region (below the top of the 

petroleum window) in the center of the basin.

A second target area consists of organic-rich shales located deep in the basins within the 
oil window. (These areas correspond to the active source rock colored according to the 
different vitrinite reflectance contours (Ro values) in Figure 4-3). These zones have not 
been a major target for oil exploration in California. However, these shales have been 
the source rocks for much of the oil that has been discovered and produced in California. 
Depending on how much oil still remains in these rocks, there may be significant potential 
associated with these rocks. Exploitation of the source rock would constitute a true shale 
oil play. This target corresponds to the Monterey shale oil play described by US EIA 
(2011) – however, estimates of the potential size of recoverable oil associated with this 
target are highly uncertain (see Sections 4.6 and 4.7).
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A third potential target would be oil-bearing shales in basins where little oil production 
has occurred. Very little published information is available about these basins, except for 
some data relating to the presence and distribution of potential source rocks. 

4.3 Sedimentary Basins in California

Most of the Neogene (the time period spanning between 23 to 2.6 million years before 
present) sedimentary basins in California (Behl, 1999) consist of marine depositional 
environments located along the continental margin as shown on Figure 4-4. All of the oil 
and gas fields in California are located in these basins (DOGGR, 1982; 1992; 1998). The 
basins are typically formed and bounded by faults, with many of the faults associated with 
the San Andreas Fault System. More detailed descriptions of many of these basins will be 
presented in Section 4.5. 

Figure 4-4. Neogene sedimentary basins in and along the coastal margins of California  

(from Behl, 1999).
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The oil-bearing sedimentary basins in California are filled with mostly marine sediments, 
which consist of both biogenic (produced by marine organisms) and clastic (derived by 
erosion of existing rocks) materials. In each basin, distinct packages of sedimentary rocks 
have been identified as formations, which are composed of rock units that represent a 
similar time-depositional sequence and have distinctive and continuous characteristics that 
allow them to be mapped. Formations can be divided into subunits, known as members, 
which in turn have specific lithologic characteristics. The same geologic formations can 
often be found in adjacent basins; they would represent units that were deposited at the 
same time, and presumably under similar conditions. A discussion of key source rock 
formations (dominated by organic-rich shales) in California is presented in Section 4.4; 
descriptions of the main sedimentary basins where these rocks were deposited are given  
in Section 4.5.

4.3.1 Structural Controls

Oil reservoirs in California have a complex structural history that resulted in folding and 
faulting. The most important aspect of these processes is that they took place along the 
margins of the North American continent over time periods when the tectonic forces caused  
a radical change of the Pacific and North American plate boundary from a subduction zone  
to a strike-slip margin in the region that is now California. The result was the formation  
of a number of structural depressions (basins) where sediments with a wide range of  
compositions were deposited. These sediments were subjected to burial and then deformation  
(faulting and folding). The following technical discussion describes these processes.

Regional tectonism plays a large role in the creation of sedimentary basins in California 
and the distribution of sedimentary facies within these basins (Graham, 1987). In many 
cases, faulting accompanied basin formation and filling, and played an integral role in 
the types and rates of sedimentation. The dynamic tectonic environment of the California 
continental margin has contributed to the structurally complex nature of many of these 
sedimentary basins, and has led to the creation of structural traps (faults and folds) in 
many of the oil and gas fields. Wright (1991) finds that over 90 percent of the oil found  
in oil fields in the Los Angeles Basin is associated with anticlinal or fault traps, associated 
(in turn) with Miocene and younger tectonism. Ingersoll and Rumelhart (1999) and 
Ingersoll (2008) have postulated a three-stage tectonic evolution of the Los Angeles 
Basin (Fig. 4-5) involving transrotation (simultaneous occurrence of strike-slip faulting 
and rotation) between 18 and 12 million years ago (Ma), transtension (simultaneous 
occurrence of strike-slip faulting and extension) between 12 and 6 Ma, and transpression 
(simultaneous occurrence of strike-slip faulting and compression) from 6 Ma to the present.
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Figure 4-5. Three-stage tectonic evolution of the Los Angeles Basin. A – Present day structural 

setting, B, C, D – Palinspastic reconstructions of basin at 6, 12, and 18 Ma (details described in 

Ingersoll and Rumelhart, 1999).

Other California basins have experienced complex tectonic histories related to strike-slip 
movement along the San Andreas Fault. Graham (1978) described the role of wrench 
tectonics in the formation of the Salinas Basin, where right-lateral offset along the 
Rinconada-Reliz fault zone (located parallel to and between the San Andreas and San 
Gregorio-Hosgri faults) led to the formation of en echelon depressions and uplifts. A shift 
from transtension to transpression in this region followed the deposition of the Miocene 
Monterey Formation (Colgan et al., 2012; Titus et al., 2007). 

Faults and fractures play a critical role in the migration and accumulation of hydrocarbons 
(Fig. 4-6) in many California oil fields (Chanchani et al., 2003; Dholakia et al., 1998; 
Dunham and Blake, 1987; Finkbeiner et al., 1997). Compressive stresses can lead to the 
development of folds, which can form structural traps with effective cap rocks when the 
formations deform plastically. Under similar forces, more brittle rocks develop fractures, 
which can provide flow pathways for upward hydrocarbon migration by providing fracture 
permeability—this is especially important when matrix permeabilities are low in clay-rich 
shales and siliceous mudstones (Hickman and Dunham, 1992). 
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Figure 4-6. Schematic depiction of the development of bed-parallel faulting in the more brittle 

porcelanite layers in the Monterey Formation, which leads to the formation of petroleum-filled 

breccia zones (Dholakia et al., 1998).

4.3.2 Diagenetic Controls

As sediments are progressively buried over time, they undergo compaction and heating, 
and reductions in matrix permeability and porosity (Zieglar and Spotts, 1978) during 
diagenesis, a process that represents the chemical, physical, and biological changes 
that transform sediments into sedimentary rocks. In addition to these physical changes, 
mineralogical and textural changes occur in many sedimentary rocks. For instance, 
silica-rich diatomaceous sediments, such as those that occur in the Monterey Formation, 
undergo significant mineralogic changes that affect their physical properties (Behl and 
Garrison, 1994; Behl, 1998; Chaika and Dvorkin, 2000; Chaika and Williams, 2001; 
Eichhubl and Behl, 1998; Isaacs et al., 1983; Isaacs, 1980, 1981c, 1982; Keller and 
Isaacs, 1985; Pisciotto, 1981). Changes in temperature result in the transformation from 
opal-A to opal-CT to microcrystalline quartz. This transformation is also affected by the 
amount of detrital minerals mixed with the silica phase (Fig. 4-7). This can lead to a 
significant change in physical properties from a diatomite, which has very high (>60%) 
porosity, to porcelanites and cherts, which have much lower porosities; all of these rocks 
have intrinsically low matrix permeabilities. The porcelanites and cherts are much more 
brittle than diatomite, and thus often develop natural fractures that can conduct fluid 
(Behl, 1998; Eichhubl and Behl, 1998; Hickman and Dunham, 1992). Contrasts in rock 
properties associated with these changes in mineralogy in the Monterey Formation can 
result in the formation of diagenetic oil traps, such as those observed in the Rose oil field, 
where the top of the reservoir in the McLure shale member occurs at the transition from 
opal-CT to quartz (Ganong et al., 2003).
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Figure 4-7. (a) Sediment composition and temperature effects on silica phase changes in the 

Monterey Formation (Behl and Garrison, 1994). (b) Changes in porosity as a function of silica 

phase transformation and burial (Isaacs, 1981c).

4.4 Primary Oil Source Rocks in California

As described above, each basin with oil has at least one source rock unit. In California 
basins, the dominant source rocks are in the Monterey Formation. However, the source 
rocks in some basins may include other geologic units. The various units identified as 
including source rock in California are discussed below.

4.4.1 Monterey Formation

The Miocene Monterey Formation is dominated by deep water marine sediments, comprising  
siliceous, phosphatic, and calcareous materials, along with a significant organic component,  
making it one of the major hydrocarbon source rocks in California (Behl, 1999; Bramlette, 
1946; Graham and Williams, 1985; Isaacs, 1989; Tennyson and Isaacs, 2001). It forms 
extensive deposits within many of the Neogene sedimentary basins in California, including 
all of the major oil-producing regions (Fig. 4-4).
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4.4.1.1 Lithologic variability of the Monterey Formation.

The main lithologies encountered (Figs. 4-8 and 4-9) include thinly laminated beds of 
chert, siliceous mudstone, porcelanite, phosphatic shale, clay shale, and dolomite (Behl, 
1999; Bramlette, 1946; Dunham and Blake, 1987; Isaacs et al., 1983; Isaacs, 1980). 
While many of these lithologic units have informally been called “shales”, they are more 
appropriately classified as mudstones, given that they are fine-grained but are relatively 
poor in actual clay mineral content (e.g., Behl, 1999; MacKinnon, 1989). Areas closer 
to the continental margin (e.g., the San Joaquin and Los Angeles Basins) have higher 
amounts of terriginous clastic input and contain turbiditic sandstones (Link and Hall, 
1990; Redin, 1991). These coarser grained deposits form important subunits within the 
Monterey, such as the Stevens and Santa Margarita sandstones (e.g., Magoon et al., 
2009). The unit is characterized by its wide range in lithologic variability (Fig. 4-10).  
This variability can be characterized through studies of outcrops and cores, but is most 
easily achieved in the subsurface through the use of geochemical (e.g., Hertzog et al., 
1989) and integrated formation evaluation (e.g., Zalan et al., 1998) logging tools.

A variety of different lithological characterizations have been developed for the Monterey, 
based upon the varying amounts of silica, carbonate, and detrital minerals present (e.g., 
Carpenter, 1989; Dunham and Blake, 1987; Isaacs, 1981a, 1981b). In general, the lower 
portion of the Monterey is carbonate-rich, the middle section has abundant phosphatic, 
organic-rich shales, and the upper section tends to be dominated by siliceous mudstones, 
porcelanite, chert, and diatomite (Behl, 1999; Govean and Garrison, 1981; Isaacs et al., 
1983; Isaacs, 1981b). A type section of the Monterey in the southwestern San Joaquin 
basin, at Chico Martinez Creek, is over 6,000 ft (1,830 m) thick, and consists of four major  
shale subunits: the Gould, Devilwater, McDonald, and Antelope shales (Mosher et al., 2013).

Figure 4-8. Generalized stratigraphic section of the Monterey Formation from the Santa Barbara  

coastal region (Isaacs, 1980). Open pattern depicts massive units, broken stipple indicates  

irregularly laminated beds, and thinly lined pattern denotes finely laminated units.
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Figure 4-9. Photographs of the main types of lithologies found in the Monterey Formation. 

Upper left – dark lenses of chert within porcelanite, Point Buchon; Upper right – Porcelanite 

with thin organic-rich clay shale interbeds, Point Buchon; Middle left – Interbedded phosphatic 

mudstones and dolomites, Shell Beach; Middle right – Orange dolomitic layers interbedded with 

siliceous shales and porcelanite, Montana de Oro State Park; Lower left – Pebbly phosphatic 

hardground, Montana de Oro State Park; Lower right – Sandy turbidite lens (with yellow field 

book) between fractured chert and porcelanite layers, Point Buchon. These localities are  

described in Bohacs and Schwalbach (1992). Photos: P. Dobson.



131

Chapter 4: Prospective Application of Well Stimulation Technologies in California

Figure 4-10. Lithologic variability of the Monterey Formation (Behl, 1999).

One of the main constituents of these marine sedimentary rocks comprises silica-rich 
diatoms. The physical properties of these diatoms are dramatically impacted by diagenetic 
processes, which result in a progressive change (with increasing temperature and burial 
depth) from opal-A to opal-CT to microcrystalline quartz (Fig. 4-7). This transformation 
results in significant changes in porosity, permeability, Young’s elastic modulus (the ratio 
of longitudinal stress to longitudinal strain), and the brittleness of the rocks, with cherts 
and siliceous mudstones particularly susceptible to fracturing (Hickman and Dunham, 
1992; Isaacs, 1984).

In addition to being an important oil reservoir, the Monterey Formation is also a major 
petroleum source rock (Graham and Williams, 1985; Isaacs, 1989, 1992a; Peters et al., 
2013, 2007; Tennyson and Isaacs, 2001). The Monterey contains several organic-rich  
shale intervals with elevated total organic carbon (TOC), including the Reef Ridge, 
McLure, Antelope, McDonald, Devilwater, and Gould shales. Graham and Williams  
(1985) reported TOC values for the Monterey in the San Joaquin Basin ranging from  
0.40 to 9.16 wt. %, with a mean value of 3.43 wt. %; higher TOC values with unit 
averages ranging between 4 and 8% TOC (6 and 13% organic matter) were reported for 
the Santa Maria Basin and the Santa Barbara coast by Isaacs (1987). TOC abundances 
are generally highest in the phosphatic shale section in the Middle Monterey (Fig. 4-11), 
where reduced dilution with biogenic sediments occurs (Bohacs et al., 2005). This  
TOC-rich portion of the Monterey would be the most likely target for unconventional  
shale oil. The kerogen in the Monterey has been interpreted to be mostly of marine  
origin (Tennyson and Isaacs, 2001).
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Figure 4-11. Distribution of organic matter, detrital sediments, and biogenic silica accumulations  

as a function of stratigraphic position in the Monterey Formation (Bohacs et al., 2005).

Key processes affecting the distribution and mineralogy of the Monterey involve original 
facies variations associated with the deposition of sediments and subsequent diagenetic 
processes, which had a profound impact on siliceous materials. These facies variations 
depend on paleoceanographic conditions which control the relative amounts of biogenic 
production of diatoms, coccoliths, and foraminifera relative to clastic sedimentation (Behl, 
1999; Bohacs and Schwalbach, 1992).

4.4.1.2 Physical Properties of the Monterey

The physical properties of a rock are critical in determining if a rock can serve as a 
reservoir rock and how it might be stimulated by hydraulic fracturing. The porosity of 
a rock represents the open pore and fracture volume of a rock. The matrix and fracture 
porosity not only provide storage volumes for fluids, but they also provide potential 
pathways for fluid flow in rocks provided the pores and fractures are interconnected.  
The permeability of a rock measures the ability of a rock to transmit fluids; the goal of  
well stimulation is to improve well production by enhancing the permeability of the 
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surrounding reservoir rock. The ability to stimulate a rock through hydraulic methods 
depends on the ability to shear or dilate existing fractures (causing them to open), or to 
create new fractures. The strength and elasticity and spatial variations of these properties 
of the rock will determine how hydraulic fractures will develop. Young’s modulus, the 
ratio of longitudinal stress to longitudinal strain, is used to estimate the rigidity of a rock. 
The total organic content determines whether a particular lithology could serve as a 
potential hydrocarbon source rock.

Physical properties (porosity, permeability, total organic content (TOC), Young’s elastic 
modulus) have been determined for a variety of Monterey rock samples. Note that the 
presence of natural fractures in the more brittle lithologies of the Monterey would result 
in a fracture permeability that would have a significant impact on oil migration (Behl, 
1998; Eichhubl and Behl, 1998; Hickman and Dunham, 1992).

The Newlove 110 well (API 08222212) in the Orcutt field was the subject of a detailed 
hydrofracture research study conducted jointly by Unocal and the Japan National Oil 
Company (Shemeta et al., 1994). Prior to the hydrofracture, the well had a thick section 
of continuous core sampled from the Monterey section (which extends from 2,030 to 
2,805 ft (619 to 855 m) in the well). Core Laboratories drilled 239 one-inch-diameter 
(2.54 cm) core plugs parallel to bedding from this core between the depths of 2,412 and 
2,820 ft (735 and 860 m) and measured horizontal air permeability, helium porosity,  
fluid saturation, and grain density. The porosities ranged from 3.7 to 37%, with an 
arithmetic average of 22.8% and a median value of 23.4% (Fig. 4-12a). Matrix horizontal 
air-permeability values ranged from 0.00 md to 5,080 md, with an arithmetic average of 
99.6 md, a geometric average of 2.59 md, a median value of 1.67 md, and a harmonic 
average of 0.12 md (Fig. 4-12b). Grain density values ranged from 2.19 to 2.96 g/cm3, 
with an arithmetic average of 2.50 g/cm3 and a median value of 2.49 g/cm3.

Isaacs (1984) reports the physical properties of three different siliceous Monterey Formation  
lithologies that illustrate the effects of diagenesis. Opal-A bearing diatomaceous mudstones  
have porosities ranging from 50-70%, matrix permeabilities from 1-10 md, and grain 
densities of 2.2-2.4 g/cm3. Opal-CT porcelanites have porosities ranging from 30-40%,  
matrix permeabilities from <0.01 to 0.1 md, and grain densities of 2.2-2.35 cm3. Quartz 
porcelanites have porosities of 10-20%, matrix permeabilities of <0.01 md, and grain 
densities of 2.1-2.4 g/cm3. Chaika and Williams (2001) observed that permeability 
reductions associated with silica phase transformation at increasing depth of burial in  
the Monterey appear to have two different trends: (1) a silica-rich host rock that has an 
abrupt porosity reduction (from 55 to 45%) associated with the change from opal-A to  
opal-CT, lending itself to a more brittle, fractured rock below this transition, and (2) a 
more gradual porosity reduction associated with this transformation for siliceous shales 
and mudstones with a higher abundance of detrital minerals. This second, more clay-rich  
rock tends to retain higher matrix porosity, which could lead to higher volumes of 
hydrocarbon storage.
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Figure 4-12. Helium porosity (a) and horizontal air permeability (b) measurements of 239 

Monterey Formation core samples from the Newlove 110 well, Orcutt oil field, Santa Maria 

basin. The Core Laboratories report can be found on the DOGGR website at:  

http://owr.conservation.ca.gov/WellRecord/083/08322212/08322212 Core Analysis.pdf

Measurements of physical properties were conducted on samples of the Antelope Shale 
member of the Monterey Formation in the Buena Vista Hills field, located between the 
giant Elk Hills and Midway-Sunset fields in the SW portion of the San Joaquin Basin 
(Montgomery and Morea, 2001). Four different rock types were studied: opal-CT 
porcelanite, opal-CT porcelanite/siltstone, clay-poor sandstone, and sandstone/siltstone. 
The porcelanite samples (399) had an average porosity of 33.8%, a median permeability 
of 0.1 md, and an average density of 2.31 g/cm3; the porcelanite/siltstone samples (451) 
had an average porosity of 25.7%, a median permeability of 0.07 md, and an average 
density of 2.36 g/cm3; the sandstones (19) had an average porosity of 21.1%, a mean 
permeability of 6.3 md, and an average density of 2.62 g/cm3; and the sandstone/siltstone 
samples (57) had an average porosity of 20.8%, a mean permeability of 0.16 md, and an 
average density of 2.57 g/cm3.

Liu et al. (1997) analyzed a number of Monterey core samples from the Santa Maria 
Basin. They reported lithotype, porosity, density, and TOC values (Table 4-1) for 10 
Monterey Formation samples obtained from two wells (with sample depths ranging from 
4,560 to 5,553 ft (1390 to 1693 m) in the Santa Maria Basin (Liu, 1994). 

http://owr.conservation.ca.gov/WellRecord/083/08322212/08322212%20Core%20Analysis.pdf
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Table 4-1. Physical properties of Monterey core samples from the Santa Maria Basin  

(Liu et al., 1997).

Morea (1998) performed reservoir characterization studies of siliceous shales and mudstones  
from the Antelope and Brown shale members of the Monterey Formation from the Buena 
Vista Hills field. As part of this study, seven core samples recovered from depths ranging 
from 4,191 to 4,799.3 ft (1277.4 to 1462.8 m) were analyzed for Young’s modulus. 
These samples, consisting of porcelanite and clayey porcelanite, have values ranging from 
1,172,000 psi up to 2,724,000 psi (8.8 to 18.9 GPa), with an average value of 1,990,000 
psi (13.7 GPa).

At the Belridge oil field, diatomites corresponding to the uppermost portion of the Monterey  
Formation are an important oil reservoir rock. Schwartz (1988) reports that the diatomites  
have elevated porosities ranging from 54 to 70%, permeabilities ranging from 0.00 to 7 md, 
and grain densities from 2.2 to 2.5 g/cm3. Similar rock-property values (55-60 % porosity,  
0.03 to 0.3 md permeability, and 2.2 to 2.5 g/cm3 grain density) are reported for this unit  
by De Rouffignac and Bondor (1995). These properties vary as a function of stratigraphic 
depth and are related to cyclical changes in biogenic and clastic sedimentation (Schwartz, 
1988). Bowersox (1990) reports lower effective porosities (36.7 to 55.4%) and higher 
permeabilities (1.86-103 md) for the producing diatomite intervals. The highly porous 
diatomites are soft rocks that have very low Young’s modulus values as follows: 20,000 - 
500,000 psi (0.14 – 3.4 GPa) (Allan et al., 2010); 50,000 – 200,000 psi (0.34 – 1.4 GPa) 
(Wright et al., 1995); 25,000 – 80,000 psi (0.17 – 0.55 GPa) (De Rouffignac and Bondor, 
1995); ~100,000 psi (0.69 GPa) (Vasudevan et al., 2001). In spite of the low rigidity of 
these rocks as indicated by the low Young’s modulus values, diatomite units have been 
successfully subjected to hydraulic stimulation to increase oil production from this highly 
porous but low-permeability lithology (Allan et al., 2010; Wright et al., 1995).

In conclusion, the different lithologies of the Monterey Formation exhibit a wide range  
of physical properties. Silica-rich diatomites have the highest porosities of any Monterey 
lithology (typically > 50%), but with diagenesis, these rocks are converted into porcelanites,  
which have significantly lower porosities (generally 20-40%). All of the Monterey lithologic  
units have intrinsically low matrix permeabilities (typically less than a millidarcy). 
However, the porcelanites, siliceous shales and mudstones, and dolomite units are quite 

Lithology Number of core 
samples

Porosity (%) Grain density (g/cm3) Total organic carbon 
(wt. %)

Porcelanite 2 10-11.4 2.14-2.17 2.28-2.4

Siliceous shale 1 4.3 2.24 6.81

Shale 3 18-21 2.02-2.35 8.19-18.2

Siliceous dolomite 3 11-19 2.38-2.70 0.52-8.12

Dolomite 1 3.0 2.72 0.19
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brittle, and often develop natural fractures, which can lead to higher fracture permeability 
for these rock types. Most of the shale (clay-rich) lithologies in the Monterey Formation 
have TOC values greater than 2%, making them prospective hydrocarbon source rocks. 
The organic-rich phosphatic shales found within the Middle Monterey (Fig. 4-11) are the 
most prospective source rocks (and most likely unconventional oil shale target) within  
the Monterey Formation. 

4.4.2 Vaqueros Formation

The Vaqueros Formation is an early to mid-Miocene marine sedimentary unit consisting  
of sandstones and shales, typically found in basins on the western side of the San Andreas  
Fault (Dibblee, 1973). The lower portion of this unit is the Soda Lake Shale Member, 
consisting of shale, claystone, and siltstone. This is overlain by the Painted Rock Sandstone  
Member. Lillis (1994) used biomarkers and stable isotopic compositions to conclude that 
much of the oil produced from the Cuyama Basin comes from the Soda Lake Shale source 
rock (see Section 4.5.5 for more details).

4.4.3 Tumey and Kreyenhagen Formations

The Tumey Formation, an Eocene age unit that just overlies the Kreyenhagen Formation, 
contains a thin calcareous shale and is often combined with the Kreyenhagen in 
stratigraphic sections (Milam, 1985; Peters et al., 2007). The Kreyenhagen Formation is  
a shale-rich formation of Eocene age that serves as a source rock for hydrocarbons in the  
San Joaquin Basin, and has a thickness of over 1,000 ft (305 m) at its type section at 
Reef Ridge, just south of Coalinga (Von Estorff, 1930). It consists of shales, laminated 
sandstones and shales, siltstones, and pebbly green sands (Isaacson and Blueford, 1984; 
Johnson and Graham, 2007; Milam, 1985). In some locations, it contains a turbiditic 
sandstone that can exceed over 1,600 ft (488 m) in thickness known as the Point of 
Rocks sandstone; in these areas, the lowermost Kreyenhagen member is known as the 
Gredal Shale member, and the uppermost Kreyenhagen member is the Welcome Shale 
member (Dibblee, 1973; Johnson and Graham, 2007). Hydrocarbons derived from 
the Kreyenhagen and Tumey Formations have been chemically distinguished from the 
Monterey on the basis of isotope geochemistry and biomarkers (Clauer et al., 2014;  
Lillis and Magoon, 2007; Peters et al., 1994; 2013).

4.4.4 Moreno Formation

The Moreno Formation is a shale-rich formation of Cretaceous-Paleocene age (McGuire, 
1988). It consists of four members that represent different clastic depositional facies. 
The base of this unit consists of the Dosados Member (and lower portion of the Tierra 
Loma Member), which consists of silty shales and turbidites with interbedded sandstones. 
The rest of the Tierra Loma member consists of brown to maroon shales. This is in turn 
overlain by the Marca Shale Member, consisting of diatomaceous and siliceous shales.  
The uppermost section of the Moreno is formed by the Dos Palos Shale Member, formed 
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by clay shales, silty shales, and glauconitic sandstones (the Cima Sandstone) and 
siltstones. The stratigraphic section of the Moreno Formation, exposed in Escarpado 
Canyon in the Panoche Hills on the western margin of the central San Joaquin Valley, 
has a thickness of around 800 m (Fig. 4-13). He et al. (2014) have characterized the 
geochemical signature of oils sourced from this formation. 

Figure 4-13. Stratigraphic column of the Moreno Formation, Escarbado Canyon, Panoche Hills, 

western margin of the central San Joaquin Basin (McGuire, 1988).

4.4.5 Comparison of the Monterey Formation with the Bakken Formation

The Monterey Formation in California can be compared with the Bakken Formation in 
North Dakota, which has seen a dramatic increase in drilling and oil production over the 
past five years (Fig. 4-14). The Bakken, along with the Eagle Ford Formation of Texas,  
are two of the largest producing unconventional shale oil units in the United States 
(US EIA, 2014a). The introduction of horizontal drilling and hydraulic stimulation 
techniques to these fields has led to near-quantum leap in oil production from these tight 
oil units. The jump in oil production from the Bakken and Eagle Ford through the use of 
unconventional well completion and stimulation techniques led to the identification of 
the Monterey as a potential next big shale oil target (US EIA, 2011). Thus, a comparison 
between the nature of the Bakken and Monterey Formations can provide insights into  
assessing the possible increases in oil production in California resulting from 
implementation of well stimulation methods.
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Figure 4-14. Increases in oil production from the Bakken Formation (US EIA, 2014a).

The Upper Devonian-Lower Mississippian Bakken Formation is a shale oil unit located in 
the Williston Basin, and found in North Dakota, Montana, Saskatchewan, and Manitoba 
(Gaswirth et al., 2013). It consists of three main zones: an upper unit, consisting of an 
organic-rich black shale; a middle unit, consisting of a silty dolostone or limestone to 
sandstone; and a lower unit, consisting of an organic black shale (Pitman et al., 2001). 
A fourth unit has been proposed for the Bakken, the Pronghorn unit, which underlies the 
lower shale unit and consists of a sandy unit previously known as the Sanish (LeFever et  
al., 2011). The Bakken has a maximum thickness of 160 ft (49 m) in the central portion 
of the basin (Fig. 4-15). The unit generally has a total thickness of less than 100 ft (30 
m) (Lefever, 2008). The main target for production has been the middle dolomitic 
zone, while the upper and lower shales are considered the primary source rocks for 
hydrocarbons found in the Bakken. The shales are organic rich, with TOC values ranging 
from less than 1% up to 35%, and averaging around 11 wt. % (Webster, 1984). The 
Bakken petroleum system is located below the top of the oil generation window (Fig. 
4-16), so hydrocarbons sourced from the shale unit are not required to have undergone 
significant migration (only into the adjacent dolomite unit (Sonnenberg et al., 2011)). 
This type of petroleum system is called a continuous petroleum accumulation (Nordeng, 
2009). Unconventional techniques (horizontal drilling into the middle Bakken combined 
with multiple zone well stimulation) have been employed to maximize oil production 
from this formation (Jabbari and Zeng, 2012). Around 450 million barrels of oil have 
been produced using these techniques from the Bakken and Three Forks Formations in the 
Williston Basin between 2008 and 2013 (Gaswirth et al., 2013). The successful production 
of oil from the Bakken has prompted discussions regarding the possible recovery of oil 
from other shale oil formations such as the Monterey (Price and LeFever, 1992).
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Figure 4-15. Isopach map of the Bakken Formation (Lefever, 2008).

Figure 4-16. Schematic EW cross section of the Bakken petroleum system. Note that the Bakken 

lies below the top of the oil window (Sonnenberg et al., 2011).
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4.4.5.1 Physical Properties

Core samples from the Middle Bakken unit obtained from the Parshall field have porosities 
ranging from 1-11% and permeabilities that average 0.0042 md (Simenson et al., 2011);  
a similar range of values of 1.1 to 10.2% (porosity) and <0.001 to 0.215 md (permeability)  
were reported by Ramakrishna et al. (2010). Production sweet spots involve areas with 
enhanced porosity and the presence of natural fractures (Pitman et al., 2001; Sonnenberg 
et al., 2011). Log-derived Young’s modulus values for the Middle Bakken are around 7 
GPa (Ramakrishna et al., 2010).

4.4.5.2 Similarities and Differences Between the Monterey and the Bakken Formations

The range of permeabilities of the Bakken dolomite reservoir unit (Middle Bakken) is 
similar to the permeability of porcelanites in the Monterey. The porosities of most of the 
Monterey lithologies, while varying significantly as a function of burial depth and degree 
of diagenesis, tend to be higher than those in the Middle Bakken dolomite.

The ages of these deposits are very different. The Monterey is Miocene in age and is still 
actively producing hydrocarbons, while the Bakken is much older (Upper Devonian-Lower 
Mississippian) in age.

The thicknesses of these units are dramatically different. The Bakken is typically less  
than 100 ft (30 m) in thickness, with a maximum thickness of 160 ft (49 m), and the 
producing middle dolomitic unit is generally less than 50 ft (15 m) thick, with a  
maximum thickness of around 90 ft (27 m). In contrast, the type section of the Monterey 
in the San Joaquin Basin is about 6,000 ft (1,830 m) thick (Mosher et al., 2013), and  
even greater thicknesses can be encountered in some of the basin depocenters. It is 
important to note that the organic-rich phosphatic shale portion of the Monterey, which 
would be the primary candidate for an unconventional oil resource in this formation, is 
considerably thinner (Figure 4-11).

The lithologic variability of the Bakken and Monterey are quite different. The Bakken 
Formation consists primarily of two distinct lithologies: (1) organic-rich shale, which 
makes up the upper and lower members of the Bakken (serving as the source rock), and 
(2) dolomite, which is the primary rock type of the producing middle Bakken member.  
In contrast, the Monterey consists of organic-rich, silicecous, and carbonate-rich shales and  
mudstones, porcelanite and diatomite, as well as interfingering sandstone turbidite bodies.

The structural setting of the Williston Basin in which the Bakken Formation resides is 
much less complex than those corresponding to the main sedimentary basins in California. 
The Williston Basin is an intracratonic basin that is not structurally controlled (Sloss, 
1987), whereas the Neogene sedimentary basins in California are tectonically controlled, 
with faults and folds strongly influencing the trapping and accumulation of hydrocarbons 
in many of the major oil fields (Wright, 1991). The presence of wrench fault structures, 
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combined with a basement of highly deformed Mesozoic subduction complex rocks,  
has led to the creation of numerous trapping structures in many of the oil regions in 
California (Graham, 1987). 

Because of the extreme variability of the Monterey, where bed lithologies vary on a 
centimeter scale, and diagenesis has dramatically affected rock physical properties, 
effective hydraulic stimulation methods vary significantly for different portions of the 
Monterey (El Shaari et al., 2011).

Figure 4-17. Schematic cross section illustrating conventional oil reservoirs (with migrating 

oil) and a continuous petroleum accumulation, as illustrated by the Bakken petroleum system 

(Nordeng, 2009).

The style of oil accumulation for the discovered resources associated with the Monterey 
Formation is different from that in the Bakken Formation. The producing oil fields that 
are hosted in the Monterey represent a conventional oil system where the oil has migrated 
from the source rock up into a reservoir zone that is capped by a trapping feature 
(structural, stratigraphic, or diagenetic trap). In contrast, the Bakken petroleum system 
represents a continuous petroleum accumulation (Fig. 4-17), where the oil is formed 
from organic-rich shales and migrates locally into an adjacent formation (the dolomite 
of the Middle Bakken) that is slightly more permeable and porous than the source shales 
(Nordeng, 2009). We note that the dolomite still has low enough permeability so that 
it requires stimulation for commercial production. The absence of faults and extensive 
fractures precludes hydrocarbon migration away from this region. It is possible that a 
similar type of oil accumulation could exist within the deeper portions of the Monterey, 
but significant amounts of oil that have been generated from these depocenters (areas 
where thickest accumulations of sediment have occurred) have migrated and accumulated 
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to form the main oil fields in California. The complex tectonic history for sedimentary 
basins in California, and the presence of natural fractures in the siliceous mudstones in the 
Monterey, would both indicate that oil generated in the basin depocenters would migrate 
via higher permeability fracture and fault pathways.

4.5 Oil-producing Sedimentary Basins in California

California is one of the largest oil producing states in the U.S., and hosts several giant 
(> 1 billion barrels of oil) oil fields. Detailed information on these oil fields can be found 
in DOGGR (1982; 1992; 1998) and on the DOGGR website http://www.conservation.
ca.gov/dog/Pages/Index.aspx. Below is a summary of selected sedimentary basins in 
California (Fig. 4-18), including the two most prolific oil-producing regions (the San  
Joaquin and Los Angeles Basins), several regions with abundant oil production (the 
Ventura and Santa Maria Basins), and two basins with a few significant oil fields (the 
Salinas and Cuyama Basins). The Sacramento Basin has almost exclusively gas production 
(the Brentwood field is the exception (Ditzler and Vaughan, 1968)), and thus is not 
included in this discussion.

Figure 4-18. Map of major sedimentary basins and associated oil and gas fields in California.

For each of the basins described in this section, figures were generated that depict the 
basin boundaries, mapped Quaternary faults, the locations of active oil fields, the areal 
extent of the main source rocks, and where these rocks lie within the oil window (see 

http://www.conservation.ca.gov/dog/Pages/Index.aspx
http://www.conservation.ca.gov/dog/Pages/Index.aspx
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Figs. 4-19, 4-23, 4-24, 4-25, 4-26, 4-29, 4-31, 4-32, 4-35, and 4-36). The existing oil 
fields would correspond to the first type of well stimulation target mentioned in Section 
4.2, whereas the deeper source rocks located within the oil window would constitute the 
second “unconventional shale oil” target.

4.5.1 Los Angeles Basin

Figure 4-19. Map of the Los Angeles Basin with outlines of producing oil fields. The orange  

shaded area depicts where deep source rocks within the oil window are located. Data from 

DOGGR, Wright (1991), and Gautier (2014).

The Los Angeles Basin is an active margin Neogene sedimentary basin (Fig. 4-19) that  
has undergone transrotation, transtension, and more recently, transpression (Fig. 4-5)  
in response to active faulting over the past 18 Ma (Beyer, 1988; Ingersoll and Rumelhart, 
1999). This complex deformational history has led to folding and faulting, creating 
structural traps for hydrocarbons (Wright, 1991). For example, the supergiant Wilmington 
oil field is hosted by a faulted, doubly plunging anticline (Mayuga, 1970; Montgomery, 
1998). Sedimentation in this basin has been dominated by submarine fan deposits 
(Redin, 1991). Thick accumulations of Miocene and Pliocene sandstones of the Puente 
and Repetto Formations serve as the primary oil reservoir rocks. Organic-rich Miocene 
shales, also described as nodular organic shales, serve as the source rock for these prolific 
oil fields (Behl and Morita, 2007; Beyer, 1988; Hoots et al., 1935; Lanners, 2013; Walker 
et al., 1983); these shales are interpreted to be time correlative with the Monterey 
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Formation. Cross sections of four oil fields, West Beverly Hills, East Beverly Hills, 
Inglewood, and Huntington (Fig. 4-20) depict the oil reservoir rocks, the structural traps, 
and the underlying source rocks (Lanners, 2013).

Figure 4-20. Cross-sections of the West Beverly Hills, East Beverly Hills, Wilmington, and  

Inglewood oil fields (Lanners, 2013). Dark-shaded areas depict location of main oil reservoir 

sections, orange-shaded areas depict organic-rich source rocks of Miocene age.

The USGS has recently conducted an assessment of the recoverable oil from of the ten 
giant (each with accumulations greater than 1 billion barrels of oil) oil fields in the 
Los Angeles Basin (Gautier et al., 2013). Based upon a probabilistic assessment of the 
original oil in place, the amount of oil produced, and expected recovery factors employing 
existing oil field technology, the USGS calculated a mean estimate of an additional 3.2 
billion barrels of oil that could be recovered from these fields. According to Gautier et 
al. (2013), the recovery of this quantity of oil in place in these fields would require the 
“unrestricted application of current best-practice technology, including improved imaging 
and widespread application of directional drilling, combined with extensive water, steam, 
and CO2 floods”; it does not indicate whether hydraulic and acid stimulation methods 
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would be applied. This estimate does not include potential contributions from the other 
58 existing oil fields in the basin, nor does it consider the discovery of new conventional 
fields, nor resources derived from unconventional sources, such as shale oil.

4.5.2 San Joaquin Basin

The San Joaquin Basin is located in the southern portion of the Great Valley, a large 
topographic depression between the Sierra Nevada and the Coast Ranges (Fig. 4-21).  
It first formed as a forearc basin (located between the subduction zone and the volcanic 
arc (the Sierra Nevada batholith represent the intrusive roots of this system)) during the 
Mesozoic and was associated with subduction along the continental margin. A change 
from a convergent to a transform plate boundary during the Cenozoic led to periods of 
subsidence and uplift (Goodman and Malin, 1992; Hosford Scheirer and Magoon, 2008; 
Schwochow, 1999). The basin is filled with a thick sequence of Cretaceous to Quaternary 
sediments, with mixed marine and continental sources (Hosford Scheirer and Magoon, 
2008; Johnson and Graham, 2007; Schwochow, 1999)

Figure 4-21. The San Joaquin Basin and producing oil fields (Oil field data from DOGGR).
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Figure 4-22. Summary stratigraphic sections for the San Joaquin Basin, highlighting relative 

locations of source and reservoir rocks (Hosford Scheirer and Magoon, 2008
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Figure 4-23. Distribution and estimated active source area of the Moreno Formation in the  

San Joaquin Basin (Magoon et al., 2009).

Figure 4-24. Distribution and estimated active source area of the Kreyenhagen in the San  

Joaquin Basin (Magoon et al., 2009).
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Figure 4-25. Distribution and estimated active source area of the Tumey in the San Joaquin 

Basin (Magoon et al., 2009).

Figure 4-26. Distribution and estimated active source area of the Monterey in the San Joaquin 

Basin (Magoon et al., 2009).
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The Monterey is the dominant source rock for producing oil fields in the San Joaquin 
Basin and also serves as a reservoir rock for many oil fields. However, many of these 
reservoirs are located above the oil window (Fig. 4-3), and the kerogen present at 
reservoir depths is thermally immature, suggesting that the oil migrated updip from 
deeper in the basin (Graham and Williams, 1985; Kruge, 1986).

In several fields in the San Joaquin, such as South Belridge and Lost Hills, significant oil 
production occurs from the upper Monterey diatomite unit (Bowersox, 1990; Schwartz, 
1988). These reservoir rocks have high matrix porosities, but low permeabilities (see 
Section 4.4.1.1 for more details). Directional wells targeting specific pay zones coupled 
with hydraulic fracturing (Fig. 4-27) have been employed to improve hydrocarbon recovery  
from the South Belridge and Lost Hills fields (Allan et al., 2010; El Shaari et al., 2011; 
Emanuele et al., 1998; Wright et al., 1995). While some oil production occurs from  
low-permeability diatomite and fractured siliceous mudstones in the Monterey at the 
Midway-Sunset field, the most productive intervals are interbedded turbidite sands  
(Fig. 4-28) (Link and Hall, 1990; Mercer, 1996; Underwood and Kerley, 1998). These sands  
have much more favorable reservoir properties (porosity ~33%, permeabilities between 
800-4,000 md) than the Monterey lithologies that surround them (Link and Hall, 1990).

Figure 4-27. Schematic of directional well for the South Belridge field targeting the top of  

the diatomite unit, oriented longitudinally along the flanks of the anticline, with hydraulic  

fracturing to improve well performance (Allan and Lalicata, 2012).

Production also occurs from diagenetically transformed diatomite, porcelanite, in the Elk 
Hills field (Reid and McIntyre, 2001). Oil production out of the Antelope shale member 
of the Monterey at the Buena Vista Hills field (mostly consisting of porcelanite) has been 
hampered by low primary recovery values of 4-6%. Attempts to stimulate the reservoir 
using hydraulic stimulation techniques led to the generation of a complex system of 
fractures, which seemed to increase flow tortuosity near the well bore. The failure to  
stimulate longer vertical fractures was thought to be due in part to the wide contrast in 
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rock strength on a bed-to-bed scale, leading to delamination and poor transmission 
of proppants into the fracture network (Montgomery and Morea, 2001). Enhanced oil 
recovery using CO2 flooding was proposed as a means to improve oil recovery in this field.

Figure 4-28. Block diagram depicting location of Webster sand turbidite lobes within the Antelope  

Shale Member of the Monterey Formation in the Midway-Sunset field (Link and Hall, 1990).

The USGS has recently conducted an assessment of the recoverable oil from nine major 
oil fields in the San Joaquin Basin (Tennyson et al., 2012). Based upon a probabilistic 
assessment of the original oil in place, the amount of oil produced, and expected recovery 
factors employing existing oil field technology, the USGS calculated a mean estimate 
of an additional 6.5 billion barrels of oil that could be recovered from these existing 
fields. Tennyson et al. (2012) note that “much of the potential reserves could come from 
improved recovery in diatomite reservoirs of the Monterey Formation”. Given that the 
increased production of oil from Monterey diatomite reservoirs in the San Joaquin (such 
as at South Belridge) has been associated with most of the well hydrofracturing conducted 
in California (see Section 3), this increased recovery would certainly require similar well 
stimulation methods. This estimate does not include potential contributions from the other 
oil fields in the basin, nor does it consider the discovery of new conventional fields, nor 
resources derived from unconventional sources, such as shale oil. Results of exploratory 
drilling in deeper portions of the San Joaquin Basin, which would test the viability of the 
Monterey Formation source rock oil play, are discussed in Section 4.6.
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4.5.3 Santa Maria Basin

The Santa Maria Basin is located along the coast of California between Point Arguello  
and San Luis Obispo (Fig. 4-29). It is bounded by the San Rafael Mountains and  
Sur-Nacimiento fault to the northeast and the Santa Ynez Mountains and Santa Ynez 
fault to the south (Sweetkind et al., 2010; Tennyson and Isaacs, 2001; Tennyson, 1995). 
Changes in plate interactions have led to a complex tectonic evolution of this basin, with 
episodes of extension and subsidence, shortening and uplift, and rotation (McCrory et al., 
1995). It contains a thick sequence of Neogene sediments, most of which are Miocene and 
younger. The Monterey Formation is the principal source rock for oil fields in this basin, 
and most of the production occurs from fractured siliceous mudstone, porcelanite, chert, 
and dolomite in the Monterey (Isaacs, 1992b; MacKinnon, 1989; Tennyson and Isaacs, 
2001). Fractured diagenetic dolomites have been identified as a significant component 
of some of the producing oil fields from this basin (Roehl and Weinbrandt, 1985). Oil 
fields in this basin are localized in faulted anticline structures, and deeper synclines are 
interpreted to represent the source region for the migrated hydrocarbons produced from 
these fields (Fig. 4-30). A brief description of the results of deep exploration drilling in  
the Santa Maria Basin is presented in Section 4.6.

Figure 4-29. Santa Maria Basin and producing oil fields (Oil field data from DOGGR).  

Distribution of Monterey Formation (green) and portion below top of oil window (~6,700  

feet depth - Tennyson and Isaacs, 2001) highlighted in orange) determined using data from 

Sweetkind et al. (2010).
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Figure 4-30. NS cross section through the Santa Maria Basin (Tennyson and Isaacs, 2001). Oil 

fields are located in faulted anticlinal traps – oil presumed to be generated in deeper synclines.

4.5.4 Ventura Basin

The Ventura Basin (and the adjacent offshore Santa Barbara Basin) is a structurally 
complex faulted and folded synclinal trough between the Santa Ynez Mountains to the 
north and the Santa Monica Mountains and Channel Islands to the south (Fig. 4-31) 
(Dibblee, 1988; Keller, 1988; 1995; Nagle and Parker, 1971; Tennyson and Isaacs, 2001). 
It contains a thick sequence (up to 36,000 ft (11,000 m) of Upper Cretaceous, Tertiary, 
and Quaternary sediments. In the primary depocenter, the Plio-Pleistocene sedimentary 
section can reach thicknesses of up to 20,000 ft (6,100 m) (Dibblee, 1988; Nagle and 
Parker, 1971) (Fig. 4-32). Most of the oil accumulations in the basin are associated  
with faulted anticlinal traps (Keller, 1988; Nagle and Parker, 1971; Tennyson and Isaacs, 
2001). While the main source rock for this basin is thought to be the Monterey, the 
overlying Sisquoc Formation and the underlying Rincon shale may also be sources  
of hydrocarbons. The Monterey is age-correlative with the Modelo Formation, which 
contains a much higher proportion of sandstone (Nagle and Parker, 1971). The most 
prolific oil fields in this basin produce from sandstones from the Pliocene Pico and 
Repetto Formations (Keller, 1988; Nagle and Parker, 1971; Tennyson and Isaacs, 2001). 
Production from the fractured Monterey is limited to a few fields, including the offshore 
South Elwood and Hondo fields (Tennyson and Isaacs, 2001).
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Figure 4-31. The Ventura Basin and producing oil fields (Oil field data from DOGGR).  

Distribution of the Monterey (green) from Nagle and Parker (1971). No data were available  

to constrain the distribution of the active source rock for this basin.

Figure 4-32. NE-SW cross-section through the Ventura Basin (Nagle and Parker, 1971).
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4.5.5 Cuyama Basin

The Cuyama Basin is a Neogene basin located in the southern Coast Ranges in central 
California, just west of the San Andreas Fault (Fig. 4-33). The basin contains nonmarine and  
marine sediments, and has been affected by strike-slip and thrust faulting (Baldwin, 1971).

In the Cuyama Basin, the Saltos shale forms the lower part of the Monterey Formation, 
while the Whiterock Bluff shale forms the upper section. The Branch Canyon sandstone 
is intercalated with both of these shale units, and is more abundant in the SE portion of 
the basin, which had a larger input of terrigenous sediments (Lagoe, 1982; 1984; 1985). 
The Saltos shale has a larger terrigenous sedimentary component than the Whiterock Bluff  
shale and consists of interbedded sandstones, mudstones, and impure carbonates. In contrast,  
the Whiterock Bluff shale is dominated by biogenic sediments, and consists of siliceous 
and diatomaceous shales and mudstones with minor dolomitic interbeds (Lagoe, 1985). 

Figure 4-33. Cuyama Basin and associated oil fields (DOGGR), along with distribution of  

Monterey source rock (Sweetkind et al., 2013) and portion below top of oil window (~2.7 km 

depth based on data from Lillis (1994)).
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Oil production from this basin is predominantly from the Painted Rock Sandstone  
member of the Miocene Vaqueros Formation, which underlies the Monterey Formation 
(Fig. 4-34) (Isaacs, 1992a). Based on carbon stable isotope compositions and biomarker 
data, Lillis (1994) determined that the source rock is the Soda Lake shale member of the 
Early Miocene Vaqueros Formation. The distribution of the Soda Lake shale member and 
the portion of this unit that lies within the oil window are depicted in Figure 4-35.

Figure 4-34. Diagrammatic NW–SE stratigraphic section across the Cuyama Basin  

(Sweetkind et al., 2013).
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Figure 4-35. Cuyama Basin and associated oil fields (DOGGR), along with distribution of  

Vaqueros source rock (Sweetkind et al., 2013) and portion below top of oil window (~2.5 km 

depth based on data from Lillis (1994)).

Figure 4-36. Salinas Basin and associated oil fields (DOGGR), along with distribution of source 

rock (green) and portion below top of oil window (~2,000 m - Menotti and Graham, 2012), 

with data from Durham (1974) and Menotti and Graham (2012).
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4.5.6 Salinas Basin

The Salinas Basin is a Neogene basin dominated by wrench tectonics, with mid-Miocene 
subsidence associated with transtension and subsequent uplift, folding, and faulting 
associated with transpression (Colgan et al., 2012; Durham, 1974; Graham, 1978; 
Menotti and Graham, 2012) (Figure 4-36). The period of basin subsidence coincided with 
deposition of a thick sequence (up to 3 km) of Monterey Formation sediments (Menotti  
et al., 2013). Laminated marine shales from the lower portion of the Monterey have 
elevated total organic carbon contents (TOC), with moderately laminated shales having 
average TOC values of 3.12% and well-laminated hemipelagic Monterey sediments having 
an average TOC value of 4.59%, making them good candidates for oil source rocks 
(Mertz, 1989). The Salinas Basin contains a single large oil field, the San Ardo field 
(Baldwin, 1976; Isaacs, 1992a). A cross section through this field (Fig. 4-37) illustrates 
the important role that structural features play in the migration and trapping of oil 
(Menotti and Graham, 2012).

Figure 4-37. E-W cross section through the San Ardo oil field, Salinas Basin, depicting key 

components of the petroleum system (Menotti and Graham, 2012).
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4.5.7 General Observations of Neogene Sedimentary Basins in California

While there are numerous differences between different Neogene sedimentary basins in 
California, they do share a number of common characteristics. They all have complex 
tectonic histories that have been shaped by the transform plate boundary characterized by 
the San Andreas Fault system. Phases of rotation, extension, and compression associated 
with this faulting led to episodes of basin deepening, uplift, and deformation. During the 
Miocene, there was extensive deposition of silica-rich fine-grained marine sediments in 
many of these basins, resulting in the Monterey Formation. The organic-rich phosphatic 
shale portion of this thick and areally extensive unit is the primary source rock for 
most of the major oil fields in California. The structural complexity of the basins led 
to the development of structural traps on the margins of the basins, where most of the 
producing oil reservoirs are encountered. The zones where oil generation occurs (within 
the oil window) are in the deeper portions of the basins. Oil has migrated from the active 
source rock areas into the reservoir rocks, and has been trapped by impermeable seals 
that overlie the reservoirs. Areas with potentially active source rock have been identified 
in each basin, but as discussed below in Section 4.6, exploration wells drilled into these 
active source rocks as a shale oil play have not yet resulted in the discovery of new oil 
fields in California.

4.6 Results of Exploratory Drilling of Deep Shales in California

Relatively few of the hundreds of thousands of oil wells drilled to date in California have 
targeted deep exploration zones (Schwochow, 1999), in part due to the higher costs, and 
also because many of the discovered oil fields are hosted in relatively shallow reservoirs 
with structural traps that lie above the oil window (Fig. 4-3). As noted in Section 4.5, 
source rocks within the Neogene sedimentary basins in California are found at depths 
typically greater than 8,000 to 10,000 feet (2.4 to 3.0 km), which marks the top of the 
oil window. Deep wells are needed to ascertain if these source rocks retain significant 
hydrocarbons and could serve as unconventional shale oil reservoir rocks.

Deep drilling beneath the existing oil reservoirs at the Elk Hills oil field (San Joaquin 
Basin) was conducted by the United States Department of Energy (DOE) to evaluate the 
prospects for hydrocarbon production from deeper reservoir intervals (Fishburn, 1990). 
Three deep wells were drilled, ranging in depth from 18,270 to 24,426 ft (7,455 m). 
While these wells did not encounter commercial quantities of hydrocarbons beneath 
the main production units of the field, they did have oil and gas shows. Cores of shale 
recovered from the Eocene Kreyenhagen Formation, the top of which was encountered 
at a depth of 15,700 ft (4,785 m) in the 987-25R well, exuded oil and gas from fine 
fractures. This shale overlies a 325 ft (99 m) thick section of oil-stained sands from the 
Eocene Point of Rocks sandstone, which is just above an 800 ft (244 m) thick section 
of salt. Measured porosity values for this sandstone range from 14-16% in this well, 
but are quite a bit lower (around 6%) for the same stratigraphic section in the 934-29R 
well, which encountered it at depths between 21,640 to 22,890 ft (6596 to 6977 m). 
Much higher porosities (20-35%) are observed for this unit where it is encountered at 
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significantly shallower depths (<3000 feet) in other oil fields in the San Joaquin Basin 
(Schwochow, 1999), suggesting that compaction due to burial and diagenesis has led to 
significant porosity reduction. Average measured core permeabilities for this sandstone 
were around 4 md in the 987-25R well and less than 1 md in the deeper occurrence in the 
934-29R well. The location of the oil window beneath the Elk Hills field based on vitrinite 
reflectance measurements is estimated to be between depths of 12,900 to 19,200 ft (3,930 
to 5,850 m). The only oil field that has reported significant production of oil from the 
Point of Rocks Sandstone where it is encountered at depths greater than 9,000 ft (2,740 m)  
is the McKittrick field; this pool also has substantial gas production (Schwochow, 1999).

Another potential deep target consists of shales that have been displaced deeper due to 
thrust faulting and folding such as a fault displacement gradient fold at the Lost Hills 
field (Fig. 4-38) as described by Wickham (1995). Based upon a subthrust play developed 
for the East Lost Hills, several exploratory deep wells were drilled into the footwall. The 
first well, spudded in 1998, encountered a high gas pressure surge while drilling in the 
Temblor at a depth of 17,640 ft (5377 m), and as the crew attempted to circulate out the 
gas, the venting gas and hydrocarbons ignited, engulfing the rig in flames. It took more 
than 6 months to bring the well under control (Schwochow, 1999). However, of the 65-70  
deep wells that were drilled to a depth greater than 15,000 ft (4,570 m) in the San 
Joaquin Basin by 1999, none proved to be commercially productive (Schwochow, 1999).

Figure 4-38. Cross section through the Lost Hills oil field constrained by seismic data depicting 

relative downward offset of Monterey and other units in footwall block of Lost Hills thrust fault.
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Within the Santa Maria Basin in the Los Alamos field, innovative drilling techniques were 
used to drill a deep target (~10,000 ft true vertical depth (TVD)) in the Monterey, where 
a fractured siliceous shale interval had been identified (Witter et al., 2005). However, 
even though a highly deviated well course that intersected numerous fractures was drilled, 
the well did not result in sustained commercial production. 

With the success of unconventional drilling and well completion methods in other oil 
shale areas in the U.S., there has been renewed focus on the Monterey to explore the 
effectiveness of using these methods (Durham, 2010, 2013; Redden, 2012). Venoco 
and Oxy have drilled a number of deeper wells targeting zones between 6,000 and 
14,000 feet, and have employed well stimulation techniques in an attempt to increase 
hydrocarbon production. As part of this exploration effort, Venoco has drilled a number 
of deeper wells in the Semitropic field that target the Monterey, which lies below the 
Randolph sands of the Pliocene Etchegoin Formation, where most current production  
from this field occurs. One of these new wells, the Scherr Trust et al 1-22 (API 03041006), 
was spudded in Dec. 2010 and drilled to a depth of 14,015 ft (4272 m) (13,921 ft (4243 
m) TVD) (Fig. 4-39) (http://owr.conservation.ca.gov/Well/WellDetailPage.aspx?domsa
pp=1andapinum=03041006). The primary target was the Monterey “N” chert; this zone 
was perforated (depth interval of 12,495-12,510 ft (3808-3813 m) and then fracture 
stimulated, but only a very limited amount of oil was produced in subsequent flow tests. 

Based on reviews of DOGGR records for new wells from this field and the neighboring 
Bowerbank field, these deeper Monterey wells have not been very successful to date. A 
review of drilling results for unconventional oil reservoirs in the Monterey for a number 
of fields in the San Joaquin Basin from 2009 to 2013 by Burzlaff and Brewster (2014) 
indicates that average initial production rates are on the order of 75-150 barrels of oil per 
day. Projected expected ultimate recovery (EUR) from these wells is estimated to be on 
the order of 20,000-25,000 barrels for wells in fields on the west side of the San Joaquin 
Basin and about 90,000-100,000 barrels for wells located in fields on the eastern margins 
of the basin, with much higher gas-to-oil ratios for the west side wells. An industry report 
of testing of hydraulic fracturing and oil production in the Kreyenhagen indicates the 
presence of mobile oil (Petzet, 2012). However, no evidence has been found to suggest 
any further development of oil production from the Kreyenhagen. 

http://owr.conservation.ca.gov/Well/WellDetailPage.aspx?domsapp=1&apinum=03041006
http://owr.conservation.ca.gov/Well/WellDetailPage.aspx?domsapp=1&apinum=03041006
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Figure 4-39. Schematic well completion diagram for Scherr Trust et al 1-22 well in Semitropic 

field, with Monterey “N” chert interval perforated and hydrofractured (DOGGR records).
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4.7 Review of the US EIA 2011 Estimate of Monterey Source Rock Oil

US EIA (2011) estimated that there are 15.4 billion barrels of technically recoverable shale 
oil resources in the Monterey/Santos play in southern California. This estimate was based 
on the play covering an area of 1,752 square miles (4,538 km2), with 16 wells per square 
mile, and each well recovering an average of 550,000 barrels of oil. This prospective 
play area covers parts of the San Joaquin, Los Angeles, Ventura, Santa Maria, Cuyama, 
and Salinas Basins, and includes offshore regions. For this play, the oil shale is located at 
depths varying between 8,000 and 14,000 ft (2,440 and 4,270 m) and with thicknesses 
ranging from 1,000 to 3,000 ft (305 to 914 m). Other estimated shale play properties 
include an average porosity of 11% and a TOC of 6.5 % (US EIA, 2011).

The calculated total areas of estimated active (below the top (Ro > 0.6) and above the 
bottom (Ro < 1.2) of the oil window) Monterey (and Monterey equivalent) source rocks 
for the major onshore oil basins in California (as depicted in Figures 4-18, 4-25, 4-28, 
4-30, 4-32, and 4-35) are summarized in Table 4-2. The calculated areal extent of the 
potential unconventional Monterey resource (4532 km2) is similar to that reported by US 
EIA (2011), which is 4538 km2. Given that the onset of oil generation may begin at lower 
vitrinite reflectance levels in the Monterey (Walker et al., 1983; Petersen and Hickey, 
1987), the extent of active oil generation may be greater, as this could extend the oil 
window to shallower depths.

Table 4-2. Estimated extent of potential Monterey Formation unconventional oil shale play.

The assumed average oil production amount per well for the US EIA report (550,000 
barrels) significantly exceeds the observed long-term cumulative productivity of wells in 
this formation in conventional oil fields. Hughes (2013) conducted an extensive review of 
all oil wells in the San Joaquin and Santa Maria Basins that were drilled since 1980 and 
that produce from the Monterey Formation. For wells with a production history of at least 
10 years, Hughes found that the average cumulative oil production of wells with vertical 
and directional completions was 127,000 barrels and 97,000 barrels from the San Joaquin 

Basin Areal extent of source 
rock (km2)

References

Los Angeles 455 Wright, 1991; Gautier, 2014

San Joaquin (Antelope) 1309 Magoon et al., 2009

San Joaquin (McLure) 2309 Magoon et al., 2009

Santa Maria 204 Tennyson and Isaacs, 2001; Sweetkind et al., 2010

Ventura unconstrained Nagle and Parker, 1971

Cuyama 33 Lillis, 1994; Sweetkind et al., 2013

Salinas 222 Durham, 1971; Menotti and Graham, 2012

Total 4532
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Basin and 67,000 and 141,000 barrels from the Santa Maria Basin (Fig. 4-40). Based on 
these observed historical production rates, it is unlikely that the average recovery per 
well from Monterey source rocks will be as high as the average cumulative production 
of 550,000 barrels assumed in the US EIA report. A 4 to 5-fold increase in average well 
productivity relative to current production in the conventional reservoirs would need to be 
achieved to meet the assumed levels for unconventional production in what is essentially 
an unproven resource.

Figure 4-40. Cumulative oil production grouped by year of first production, 1980 through  

June 2013. Left – Monterey wells from the San Joaquin Basin; Right – Monterey wells from the 

Santa Maria Basin. Figures from Hughes (2013) based on data obtained from the Drillinginfo 

production database. Dashed line denotes average cumulative well production assumed in US 

EIA/INTEK report.

The US EIA (2011) estimate of total recoverable oil from the Monterey source rock 
appears to be overstated given that the assumed average oil recovery per well is significantly  
higher than historical production from wells in oil fields that have Monterey reservoir 
rocks. Due to a lack of operational experience, the potential recovery factor for this 
shale oil target is poorly constrained, but it is likely to be lower than what is currently 
obtained for Monterey-hosted oil reservoirs for a number of reasons, including expected  
lower permeability and porosity of the deeper source rocks. In addition, there is little  
information regarding the amounts of oil remaining in place in the deep (below oil 
window) portions of the Monterey. The thickness of the Monterey used in the INTEK 
model may also be overstated, as only a portion of the Monterey Formation has elevated 
organic contents which would allow it to serve as a source rock (Fig. 4-11). Well stimulation  
would likely be required to produce any remaining oil present in these source rocks given 
their intrinsically low matrix permeabilities. 
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The EIA Assumptions to the Annual Energy Outlook 2014 report (US EIA, 2014b) has 
revised the estimated unproved technically recoverable shale oil from the Monterey/
Santos to a value of 0.6 billion barrels. This revision is based on new estimates of the 
potential area, the well density, and the production per well (Table 4-3). The biggest 
change in the new EIA analysis results from a nine-fold reduction in the prospective 
area estimate; the projected well production rate is only 20% lower than that used in 
the INTEK model. The revised model has also assumed the use of wells with horizontal 
completions, thus resulting in fewer wells per square mile.

Table 4-3. Comparison of model parameters for 2011 INTEK and 2014 EIA estimates of unproved  

technically recoverable oil from Monterey/Santos play.

4.8 Prognosis

The Monterey Formation (and its Miocene equivalents) is the dominant source rock for 
much of the oil production in California. It also serves as an important reservoir rock 
with significant resources of migrated oil produced from several active fields, both from 
interbedded turbidite sandstones (such as the Stevens sand), as well as from diatomite 
and fractured siliceous shale, porcelanite, and dolomite. The large areal extent of the 
Monterey over most of the main sedimentary basins in California, as well as its thickness 
(up to 6,000 ft (1,830 m)), make it a significant petroleum resource target. The Monterey 
is a very young unit (Miocene), and it is currently still generating hydrocarbons.

All of the sedimentary basins in California have been impacted by active tectonism, 
which has resulted in the development of faults and folds, which serve as key structural 
components for the major oil fields. Understanding the interplay between structures 
and fluid flow in the subsurface will be critical in discovering new resources, as well as 
designing well stimulation methods that interact with the natural fracture network and 
improve recovery rates of hydrocarbons.

Almost all of the existing major oil fields that involve the Monterey occur at depths that 
are shallower than the oil window. This suggests that these fields contain oil that was 
sourced from deeper portions of the Monterey and subsequently migrated upwards and 
was trapped in the shallower intervals by either structural, stratigraphic, or diagenetic 
traps. This is confirmed by evaluation biomarker maturity indicators, which demonstrate 
that the oil found in most Monterey Formation oil reservoirs in the San Joaquin was not 
generated in situ, but instead was sourced from deeper Monterey shales (Kruge, 1986).

INTEK (2011) EIA (2014)

Areal extent (mi2) 1752 192

Wells/mi2 16 6.4

Production/well (Kbbl oil) 550 451

Total recoverable oil (Bbbl oil) 15.4 0.6
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For the Monterey Formation source rocks to also be reservoirs for unconventional 
production of oil, they would need to retain oil that was self-sourced (i.e., was formed in 
place and has not migrated). There is a considerable amount of the Monterey Formation 
within the deeper portions of major basins that lies within the oil window, but only a 
portion of the total thickness of this formation (primarily the organic-rich phosphatic 
shales in the Middle Monterey (Fig. 4-11)) would serve as a prospective unconventional 
oil shale target. These intervals could potentially host oil that has not migrated, and could 
perhaps be extracted using well stimulation methods. However, there is little published 
information on these deep sedimentary sections, so it is difficult to estimate the potential 
recoverable reserves associated with these rocks. Few deep wells have been drilled to 
date, and there are no reports of successful production from such depths. Reservoir quality 
of these rocks may be reduced through compaction and diagenesis, which would reduce 
porosity and permeability with depth (Schwochow, 1999). 

Because of the higher depths and temperatures encountered within the oil window, 
compaction and diagenetic effects would result in the conversion of what was originally 
biogenic opal-A to opal-CT or microcrystalline quartz. This would cause a reduction in 
matrix porosity, but could also result in siliceous shales that are more brittle and that have 
developed natural fractures (Chaika and Williams, 2001). The presence of such fractures 
could lead to increased formation permeability that could permit upward migration of oil.

The Monterey Formation is fundamentally different from the other major low-permeability 
unconventional oil units, such as the Bakken, in its highly variable mineralogy, lithology, 
and changes in silica phase (El Shaari et al., 2011) and the structural complexity of the 
basins within which is it located (e.g., Wright, 1991; Ingersoll and Rumelhart, 1999).  
This variability makes it more challenging to discover and produce source-rock oil, as  
evidenced by the available information regarding the results of deep drilling in the 
San Joaquin Basin. There is a lack of data regarding oil saturations for the Monterey 
Formation at depths below the oil window. This is due in part to the lack of deep wells. 
One other factor is that oil-based muds are often used when drilling through shale units, 
as the presence of swelling clays can be problematic for wellbore stability if water-based 
drilling fluids are used. This could obscure the presence of naturally occurring oil in these 
well sections.

Within the San Joaquin Basin, there are several other deeper shale units that serve as 
source rocks and that could potentially host additional unconventional shale oil resources. 
Based on the distributions of the Moreno, Kreyenhagen, and Tumey Formations and the 
depth to the top and the base of oil window reported by Magoon et al. (2009), potential 
active source regions (with Ro > 0.6 and < 1.2) for each of these units were identified 
(Figs. 4-23, 4-24, and 4-25). The calculated areal extents of the potential unconventional 
resource plays for the Moreno, Kreyenhagen, and Tumey are 2529, 3629, and 3527 km2, 
respectively. However, there is very little information available on how much generated 
oil these deep shale units still retain.
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The potential volume of migrated oil in new conventional onshore discoveries in 
California is relatively small. The USGS assessed the mean of this potential for the San 
Joaquin Basin as 393 million barrels of additional recoverable oil (Gautier et al., 2003). 
Fig. 4-40, which shows the history of onshore oil field discoveries in California, provides 
some perspective on this assessment. Only one new field, Rose (Ganong et al., 2003), 
has been discovered since 1990. Hydraulic fracturing has been used to develop this field, 
suggesting well stimulation could play a role in producing future migrated oil discoveries.

 

Figure 4-41. Discovery year of onshore oil fields (DOGGR, 1992; 1998; California Division of  

Oil and Gas, 1987; Minner et al., 2003).

Well stimulation methods could be used to a larger degree to increase the recovery 
efficiency of oil within the Monterey Formation from existing oil fields, as has been done 
in the South Belridge and Lost Hills fields, as well as oil within other geologic units. The 
USGS predicts that nine of the largest oil fields in the San Joaquin Basin could have 6.5 
billion barrels of additional oil production using current recovery technology, with 2.8 
billion barrels hosted in Monterey diatomite reservoirs (Tennyson et al., 2012). The USGS 
used probabilistic models to obtain a mean estimate of an additional 3.2 billion barrels 
of oil that could be recovered from the 10 largest oil fields in the LA basin (Gautier et al., 
2013). Part of this recovery effort would likely involve well stimulation methods.
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4.9 Summary

Credible estimates of the potential for increased recovery enabled by well stimulation 
technologies (WST) indicate that about 5 to 16 billion barrels might be produced in and 
near 19 existing giant fields in the San Joaquin and Los Angeles Basins where the WST 
and production technologies in use today work well. The 2011 US EIA estimates of about 
15 billion barrels of technically recoverable oil from new plays in the Monterey Formation 
source rock have been revised in 2014 to a value of 0.6 billion barrels (US EIA 2014b); 
these estimates of unconventional oil resources are not well constrained. 

There are significant resources in existing fields and estimates of these resources are 
relatively consistent. The USGS (Tennyson et al., 2012; Gautier et al., 2013) estimates 
that an additional 6.5 billion barrels and 3.2 billion barrels can be recovered from the 
largest fields in the San Joaquin and Los Angeles Basins, respectively, using existing oil 
production technology (see Figures 4-19 and 4-26). 

New oil and gas production in regions removed from existing fields is more uncertain 
than increased production in existing oil and gas fields in the near term. There is a 
considerable amount of source rock including the Monterey Formation and other geologic 
units within the deeper portions of major basins that could potentially contain oil that 
has not migrated (“source” oil), and could perhaps be extracted using WST. However, 
there is little published information on these deep sedimentary sections, so it is difficult 
to estimate the potential recoverable reserves associated with these rocks. No reports of 
significant production of source oil from these rocks were identified.

The US EIA 2011 INTEK report has garnered considerable attention because of its large 
estimate of 15.4 billion barrels of technically recoverable oil in Monterey Formation source 
rock. Very little empirical data is available to support this analysis and the assumptions 
used to make this estimate appear to be consistently on the high side. INTEK estimates 
that the average well in low-permeability source rock in the Monterey Formation will 
produce 550 thousand barrels of oil. This amount greatly exceeds the production that 
has occurred to date from low-permeability rocks in known oil accumulations in this 
formation, with single-well oil production of only 67 and 141 thousand barrels in the  
San Joaquin and Santa Maria Basins, respectively (Hughes 2013). Consequently the 
INTEK estimate requires a four to five-fold increase in productivity per well from an 
essentially unproven resource. 

In addition the Monterey Formation was formed by complex depositional processes and 
subsequently deformed in many tectonic events, resulting in highly heterogeneous as 
well as folded and faulted rocks that are difficult to characterize. INTEK posits production 
over an area of 4,538 km2 (1,752 square miles), but this is almost the entire source rock 
area estimated in this report (note that the updated US EIA (2014b) report has reduced 
this areal extent significantly to 497 km2 (192 square miles). There has not been enough 
exploration to know how much of the Monterey source rock has retained oil, or if the oil 
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has largely migrated away (Hughes 2013), but it is unlikely the entire source rock area 
will be productive given the extreme heterogeneity in the Monterey Formation. Finally, 
even if significant amounts of oil do remain in the Monterey Shale, and wells reach this 
oil, it still remains to be determined if hydraulic fracturing of Monterey source rock will 
result in economically viable production. For all these reasons, the INTEK estimate of 
recoverable oil in Monterey Formation source rock warrants some skepticism. The EIA  
has issued a revised estimate (0.6 billion barrels) of this unconventional oil resource 
(US EIA, 2014b); this decrease is mainly due to a nine-fold reduction in the estimated 
potential resource area.

Although there is potential for new production from undiscovered migrated oil accumulations  
in the Monterey Shale, the potential is small. A major reason for the reduced potential is 
that the USGS assessment of (migrated) oil in new, undiscovered conventional fields in  
the San Joaquin Basin is less than 400 million barrels, much smaller than the estimate 
given above for recoverable oil from known fields.
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