An Independent Scientific Assessment of Well Stimulation in California

Volume III

Case Studies of Hydraulic Fracturing and Acid Stimulations in Select Regions: Offshore, Monterey Formation, Los Angeles Basin and San Joaquin Basin

Jane C. S. Long, Laura C. Feinstein
Jens T. Birkholzer, William Foxall, James E. Houseworth, Preston D. Jordan, Nathaniel J. Lindsey, Randy L. Maddalena, Thomas E. McKone, William T. Stringfellow, Craig Ulrich
Matthew G. Heberger • Seth B.C. Shonkoff • Adam Brandt • Kyle Ferrar
Donald L. Gautier • Scott E. Phillips • Ben K. Greenfield • Michael L. B. Jerrett

1California Council on Science and Technology, Sacramento, CA
2Lawrence Berkeley National Laboratory, Berkeley, CA
3Pacific Institute, Oakland, CA
4PSE Healthy Energy, Berkeley, CA
5Stanford University, Stanford, CA
6The FracTracker Alliance, Oakland, CA
7DonGautier L.L.C., Palo Alto, CA
8California State University Stanislaus, Turlock, CA
9University of California Berkeley, Berkeley, CA
10University of California Los Angeles, Los Angeles, CA

Acknowledgments

This report has been prepared for the California Council on Science and Technology (CCST) with funding from the California Natural Resources Agency.

Copyright

Copyright 2015 by the California Council on Science and Technology
ISBN Number: 978-1-930117-70-9

About CCST

CCST is a non-profit organization established in 1988 at the request of the California State Government and sponsored by the major public and private postsecondary institutions of California and affiliate federal laboratories in conjunction with leading private-sector firms. CCST's mission is to improve science and technology policy and application in California by proposing programs, conducting analyses, and recommending public policies and initiatives that will maintain California's technological leadership and a vigorous economy.

Note

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project.

For questions or comments on this publication contact:

California Council on Science and Technology
1130 K Street, Suite 280
Sacramento, CA 95814
916-492-0996
ccst@ccst.us
www.ccst.us

Layout by a Graphic Advantage! 3901 Carter Street #2, Riverside, CA 92501
www.agraphicadvantage.com
Table of Contents

1. Introduction ... 1

1.1. Background ... 1

 Box 1.1-1. History of Oil and Gas Production in California 3

1.2. CCST Committee Process ... 4

1.3. The Four Case Studies ... 5

1.4. Data and Literature Used in the Report .. 7

 1.4.1. Data on Well Stimulation Statistics and Stimulation Chemistry 7

 1.4.2. Information and Data on Well Stimulation Impacts 8

 1.4.3. Data for Case Studies ... 9

1.5. Conclusions and Recommendations of Volume III 9

 Offshore Case Study: ... 9

 Conclusion 1.5. Record keeping for hydraulic fracturing and acid
 stimulation in federal waters does not meet state standards 9

 Recommendation 1.2. Improve reporting of hydraulic fracturing and acid
 stimulation data in federal waters ... 10

 Monterey Formation Case Study: ... 10

 Conclusion 2.2. Oil resource assessment and future use of hydraulic
 fracturing and acid stimulation in the Monterey Formation of California
 remain uncertain .. 10

 Recommendation 2.1. Assess the oil resource potential of the Monterey
 Formation .. 13

 Recommendation 2.2. Keep track of exploration in the Monterey Formation..... 13

 Los Angeles Basin Case Study: ... 13
<table>
<thead>
<tr>
<th>Conclusion</th>
<th>Recommendation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3. Emissions concentrated near all oil and gas production could present health hazards to nearby communities in California.</td>
<td>6.3. Assess public health near oil and gas production.</td>
<td>13</td>
</tr>
<tr>
<td>San Joaquin Basin Case Study:</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.1. Future use of hydraulic fracturing in California will likely resemble current use.</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>4.1. Produced water disposed of in percolation pits could contain hydraulic fracturing chemicals.</td>
<td>4.1. Ensure safe disposal of produced water in percolation pits with appropriate testing and treatment or phase out this practice.</td>
<td>16</td>
</tr>
<tr>
<td>4.3. Required testing and treatment of produced water destined for reuse may not detect or remove chemicals associated with hydraulic fracturing and acid stimulation.</td>
<td>4.3. Protect irrigation water from contamination by hydraulic fracturing chemicals and stimulation reaction products.</td>
<td>19</td>
</tr>
<tr>
<td>4.4. Injection wells currently under review for inappropriate disposal into protected aquifers may have received water containing chemicals from hydraulic fracturing.</td>
<td>4.4. In the ongoing investigation of inappropriate disposal of wastewater into protected aquifers, recognize that hydraulic fracturing chemicals may have been present in the wastewater.</td>
<td>20</td>
</tr>
<tr>
<td>5.1. Shallow fracturing raises concerns about potential groundwater contamination.</td>
<td>5.1. Protect groundwater from shallow hydraulic fracturing operations.</td>
<td>22</td>
</tr>
<tr>
<td>5.2. Leakage of hydraulic fracturing chemicals could occur through existing wells.</td>
<td>5.2. Evaluate the effectiveness of hydraulic fracturing regulations designed to protect groundwater from leakage along existing wells.</td>
<td>25</td>
</tr>
</tbody>
</table>
2. A Case Study of California Offshore Petroleum Production, Well Stimulation, and Associated Environmental Impacts ... 28

2.1. Abstract ... 28

2.2. Introduction ... 29

2.3. Historical Development of Offshore Oil and Gas Production in California 32

2.3.1. Initial Oil Development ... 32

2.3.2 Initial Post World War II Development ... 34

2.3.3. 1969 Santa Barbara Oil Spill ... 36

Box 2.3-1 – What Caused the Platform A Blowout? .. 38

2.3.4. Development in the 1970s and 1980s... 39

2.4. Petroleum Geology and Characteristics of California Offshore Oil and Gas Reservoirs .. 40

2.4.1. Santa Barbara Basin .. 42

2.4.2. Santa Maria Basin .. 47

2.4.3. Offshore Los Angeles Basin ... 51

2.4.4. Other Offshore Basins .. 56

2.5 Offshore Production Operations and Well Stimulation 56

2.5.1. Operations in Federal Waters ... 57

2.5.1.1. Offshore Wells .. 59

2.5.1.2. Well Stimulation .. 59

2.5.1.3. Fluids Handling ... 62

2.5.2. Operations in State Waters ... 64

2.5.2.1. Offshore Wells ... 66
Table of Contents

2.5.2.2 Well Stimulation..66

2.5.2.3. Fluids Handling ..66

2.6. Ocean Discharge and Atmospheric Emissions..68

2.6.1. Ocean Discharge from Offshore Facilities..68

2.6.1.1. NPDES Permit CAG280000...68

2.6.1.2. NPDES Discharge Monitor Reports ..72

2.6.1.3. Offshore Spills ..75

2.6.2. Atmospheric Emissions from Offshore Facilities.................................77

2.6.2.1. Air Pollutant Emission Estimates...77

2.6.2.2. Greenhouse Gas Emission Estimates ..79

2.7. Impacts of Offshore Well Stimulation Activities and Data Gaps81

2.7.1. Impacts of Offshore Well Stimulation to the Marine Environment82

2.7.1.2. Contamination Studies around California Offshore Platforms............89

2.7.1.3. Laboratory Investigations of the Impact of Waste Discharge from Offshore Oil and Gas Operations on the Marine Environment91

2.7.1.4. Evaluation of Typical Well Stimulation Chemicals and Marine Ecotoxicity ...94

2.7.1.5. Discussion of Impacts of Well Stimulation Fluids Discharge to the Marine Environment ..98

2.7.2. Impacts of Offshore Well Stimulation to Air Emissions98

2.7.2.1. Criteria Pollutants ..98

2.7.2.2. Toxic Pollutants ...100

2.7.2.3. Greenhouse Gases ..100

2.7.3. Impacts of Offshore Well Stimulation on Induced Seismicity101
Table of Contents

2.7.4. Data Gaps ... 102

2.7.4.1. Well Stimulation Activities ... 102

2.7.4.2. Air Emissions, Ocean Discharge, Injection and Associated Impacts 103

2.8 Findings, Conclusions, and Recommendations 103

2.9. Acknowledgements ... 105

2.10. References ... 105

3. Case Study of the Potential Development of Source Rock in the Monterey Formation ... 112

3.1. Abstract ... 112

3.2. Introduction ... 113

3.3. Geological Framework for the Source-Rock Case Study 115

3.3.1. What is a Source Rock? .. 115

Box 3.3-1. What to Call the Monterey? ... 117

3.3.2. What is Monterey Source Rock? ... 118

3.3.3. Non-Monterey Source Rocks in California 120

3.3.4. What is a Source-Rock System Petroleum Play? 120

3.3.5. Source-Rock Plays Versus Current Petroleum Production Practice in California ... 122

Box 3.3-2. Conventional and Unconventional Resources Versus Migrated and Source Rock Resources ... 124

3.3.8. Patterns of Development of Source-Rock Plays Outside California 126

3.3.7. What is the Potential for Production from Source-Rock (Shale Oil) in California? ... 131

3.3.7.1. High Concentration of Type II Kerogen 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7.2. Thickness of Organic-Rich Strata</td>
<td>132</td>
</tr>
<tr>
<td>3.3.7.3. Thermal Maturity</td>
<td>133</td>
</tr>
<tr>
<td>3.3.7.4. Abnormally High Pore-Fluid Pressures</td>
<td>133</td>
</tr>
<tr>
<td>3.3.7.5. Brittle Lithology</td>
<td>133</td>
</tr>
<tr>
<td>3.3.7.6. Simple Tectonic History and Minimal Structural Complexity</td>
<td>134</td>
</tr>
<tr>
<td>3.3.7.7. Retention of Producible Hydrocarbons</td>
<td>135</td>
</tr>
<tr>
<td>3.3.8. Uncertainties Surrounding the Monterey Formation as a Petroleum Reservoir</td>
<td>135</td>
</tr>
<tr>
<td>3.3.8.1. The EIA Assessment of the Monterey/Santos Shale Oil Play</td>
<td>136</td>
</tr>
<tr>
<td>Box 3.3-3: Scientific Estimates and the Incorporation of Uncertainty</td>
<td>137</td>
</tr>
<tr>
<td>3.3.8.2. Recommendation: Comprehensive Peer-Reviewed Probabilistic Resource Assessment of Continuous-Type (Shale) Oil Resources in California</td>
<td>139</td>
</tr>
<tr>
<td>3.3.8.2.1. Basic Principles of Assessment</td>
<td>139</td>
</tr>
<tr>
<td>3.3.8.2.2. Scope of the Assessment</td>
<td>140</td>
</tr>
<tr>
<td>3.3.8.2.3. Components of the Analysis</td>
<td>140</td>
</tr>
<tr>
<td>3.3.9. Exploratory Drilling in Monterey Source Rock to Date</td>
<td>141</td>
</tr>
<tr>
<td>3.3.9.1. Identifying Production from Source Rock in Public Records</td>
<td>143</td>
</tr>
<tr>
<td>3.3.10. The Geographic Footprint of Thermally Mature Monterey Source Rock in California</td>
<td>146</td>
</tr>
<tr>
<td>3.4. Potential Environmental Impacts of Well Stimulation in Monterey Source Rock</td>
<td>149</td>
</tr>
<tr>
<td>3.4.1. Overview of Potential Environmental Impacts of Well Stimulation in Monterey Source Rock</td>
<td>149</td>
</tr>
<tr>
<td>3.4.2. Land Use and Infrastructure Development</td>
<td>150</td>
</tr>
<tr>
<td>3.4.3. Potential Impacts to Water Resources</td>
<td>154</td>
</tr>
</tbody>
</table>
Table of Contents

3.4.3.1. Wastewater Management ... 154

3.4.4. Potential Impacts to Surface and Groundwater Quality 157

3.4.4.1. Surface Water Bodies ... 157

3.4.4.2. Groundwater Aquifers .. 161

3.4.4.3. Water Wells ... 167

3.4.4.4. Water Supply Systems .. 170

3.4.5. Potential Impacts to the Atmosphere ... 173

3.4.6. Potential Impacts to Seismicity .. 175

3.4.7. Potential Impacts to Wildlife and Vegetation 183

3.5. Data Gaps in Understanding the Future of Monterey Source Rock Development and its Impacts ... 190

3.6. Findings and Conclusions ... 191

3.6.1. Findings Concerning Source-Rock Development in California 191

3.6.1.1. Geologic Basis .. 191

3.6.1.2. Exploration of Monterey Source Rock 192

3.6.1.3. Potential Environmental Impacts .. 192

3.7. Acknowledgments .. 193

3.8. References ... 194

4.1. Introduction to the Los Angeles Basin Case Study 199

4.2. History, Distribution, and Potential for Additional Oil Production in the Los Angeles Basin ... 201
4.2.1. Abstract

4.2.2. Introduction

4.2.3. Historical Summary of Petroleum Development

4.2.4. Distribution of Known Petroleum

4.2.5. Resource Potential of the Los Angeles Basin

- 4.2.5.1. Undiscovered Conventional Oil Fields
- 4.2.5.2. Growth of Reserves in Existing Fields
- 4.2.5.3. Unconventional Resources
- 4.2.5.4 Summary of Resource Potential

4.2.6. Summary of Findings

4.3. Public Health Risks Associated with Current Oil and Gas Development in The Los Angeles Basin

- 4.3.1. Abstract
- 4.3.2. Introduction
- 4.3.3. Air Pollution Attributable to Upstream Oil and Gas Development and Public Health Risks in the Los Angeles Basin
 - 4.3.3.1. Background and Scientific Basis for Focus on Air Quality
 - 4.3.3.2. Summary of Air Pollution and Public Health Study Findings
 - 4.3.3.3. The Context of Air Quality Non-Attainment in the Los Angeles Basin
 - 4.3.3.4. Regional Air Pollutant Emissions in the Los Angeles Basin
 - 4.3.3.4.1. Emission Inventory Estimate of Air Pollutants from All Sources in the South Coast Region
 - 4.3.3.4.2. Emission Inventory Estimate of Air Pollutants from All Upstream Oil And Gas Development Activities in the South Coast Region
4.3.3.4.3. Emission Inventory Estimate of Air Pollutants Attributable to Well Stimulation-Enabled Upstream Oil and Gas Development in the South Coast Region ... 226

4.3.3.4.4. Known TACs Added to Well Stimulation Fluids in the South Coast Air Quality Management District .. 228

4.3.3.4.5. Discussion of Regional Air Pollutant Emissions from Oil and Gas Development in the South Coast Region ... 228

4.3.3.4.6. Discussion of Benzene and Human Health Risks 229

4.3.3.5. Screening Exposure Assessment Approach for Air Pollutant Emissions in the Los Angeles Basin ... 232

4.3.3.5.1. Intake Fraction Analysis ... 232

4.3.3.5.2. Summary of Screening Exposure Assessment for Air Pollutant Emissions in the Los Angeles Basin ... 236

4.3.3.6. Proximity Analysis of Oil and Gas Development and Human Populations ... 237

4.3.3.6.1. Study Area ... 237

4.3.3.6.2. Numbers and Types of Active Oil and Gas Wells by Oil Field in the Los Angeles Basin ... 237

4.3.3.6.3. New Wells and Wells Going Into First Production (2002-2012) 238

4.3.3.6.4. Acidizing ... 239

4.3.3.6.5. Summary: Numbers and Types of Oil and Gas Wells in the Los Angeles Basin ... 240

4.3.3.7. Proximity of Human Populations to Oil and Gas Development 240

4.3.3.7.1. Spatial Distribution of All Active Oil Wells and Active Stimulated Wells ... 240

4.3.3.7.2. Human Population Proximity Analysis ... 242

4.3.3.7.3. Comparing Population Demographics Near vs. Far from Oil and Gas Wells ... 244
4.3.4. Potential Risks to Ground Water Quality in the Los Angeles Basin........247

4.3.4.1. Conclusion of Potential Risks to Ground Water Quality in the Los Angeles Basin and Potential Public Health Hazards ..257

4.3.5. Conclusions of the Los Angeles Basin Public Health Case Study257

4.3.5.1. Air Pollutant Emissions and Potential Public Health Risks..............257

4.3.5.2. Potential Water Contamination Pathways in the Los Angeles Basin...259

4.3.6. Data Gaps and Recommendations ...259

References...263

5. A Case Study of the Potential Risks Associated with Hydraulic Fracturing in Existing Oil Fields in the San Joaquin Basin...267

5.1. Abstract..267

5.2. Introduction...269

5.3. Past and Future Oil and Gas Development Using Hydraulic Fracturing....270

5.4. Potential Risk to Water ..281

5.4.1 Water Demand ..282

5.4.2. Water Demand Reduction and Supply Increase285

5.4.3. Produced Water Disposal ...287

5.4.3.1. Disposal to Percolation Pits ...288

5.4.3.2. Injection Into Groundwater That Potentially Should Be Protected....295

5.4.3.3. Beneficial Reuse Involving Release to the Surface299

5.4.4. Leakage Via Subsurface Pathways ..301

5.4.4.1. Shallow Fracturing ..303

5.4.4.2. Leakage Via Wells ...307
Table of Contents

5.4.4.2.1. Injection Well Leakage ...308

5.4.4.2.2. Offset Well Leakage...313

5.4.4.2.3. Leakage Via Wells to Groundwater with 3,000 to 10,000 mg/L TDS313

5.4.4.3. Leakage via Faults ..315

5.5. Potential Risk to Air ...318

5.5.1. Air Pollutants ..318

5.5.2. Greenhouse Pollutants..322

5.6. Potential Risk to Public Health From Proximity to Oil Production........324

5.7 Potential Risk to Wildlife and Vegetation From Habitat329

5.7.2. Fragmentation Analysis Methodology ...331

5.7.2. Fragmentation Analysis Results ...331

5.8. Data Gaps ...336

5.9. Conclusions and Recommendations ..338

5.10. References ...342

Appendix A: Senate Bill 4 Language Mandating the Independent Scientific Study on Well Stimulation Treatments ..346

Appendix B: CCST Steering Committee Members348

Appendix C: Report Author Biosketches ..360

Appendix D: Glossary ...395

Appendix E: Review of Information Sources ...406

Appendix F: California Council on Science and Technology Study Process........433

Appendix G: Expert Oversight and Review ...437

Appendix H: Unit Conversion Table ..439
Table of Contents

Appendix 2.A: Freedom of Information Act Documents Reviewed 440

Appendix 3.A: Source Rock Potential .. 442

3.A.1. Cuyama Basin .. 442

3.A.2. Los Angeles Basin .. 444

3.A.4. San Joaquin Basin .. 449

3.A.5. Santa Maria Basin - Onshore ... 454

3.A.7. References .. 459

Appendix 3.B: Geologic Time Scale ... 461

Appendix 3.C: Methods and Data for Potential Impacts to Water Section 462

3.C.1. Water Wells – Data Source.. 462

3.C.3. Water Suppliers Data Source ... 464

Appendix 3.D: Surface Water Features .. 465

Appendix 3.E: Supplementary Table for Section 3.4.7, Potential Impacts to Wildlife and Vegetation .. 469

Appendix 4.A: Methods to Determine Numbers and Locations of Hydraulically Fractured Wells in the Los Angeles Basin .. 471

4.A.1. Study Area ... 471

4.A.2. Dataset Development .. 471

<table>
<thead>
<tr>
<th>Appendix 4.B: Methods and Approach for Spatial Analysis of Potential Public Health Risks</th>
<th>476</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.B.1. Data Sets Used</td>
<td>476</td>
</tr>
<tr>
<td>4.B.1.1. U.S. Census Bureau Data</td>
<td>476</td>
</tr>
<tr>
<td>4.B.2. Sensitive Receptors</td>
<td>476</td>
</tr>
<tr>
<td>4.B.3. Residential Elderly Care Homes</td>
<td>476</td>
</tr>
<tr>
<td>4.B.4. Schools</td>
<td>476</td>
</tr>
<tr>
<td>4.B.5. Permitted Daycare Facilities</td>
<td>477</td>
</tr>
<tr>
<td>4.B.7. Approach to Analyzed Distances from Stimulated Wells</td>
<td>479</td>
</tr>
<tr>
<td>4.B.8. References</td>
<td>480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix 5.A: Well Pattern Progression in the Cahn Pool of the Lost Hills Field</th>
<th>481</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 5.B: Potential Upper Limit Hydraulic Fracturing Constituent Concentrations in Produced Water from Select Oil Fields</td>
<td>482</td>
</tr>
<tr>
<td>Appendix 5.C: Comparison of Potential Hydraulic Fracturing Fluid Constituent Upper-Limit Concentrations in Produced Water to Available Maximum Contaminant Levels and Concentration Goals for Drinking Water</td>
<td>483</td>
</tr>
<tr>
<td>Appendix 5.D: Additional Tables Regarding Population Demographics in Proximity to Hydraulically Fractured Wells And All Active Oil And Gas Production Wells In The San Joaquin Basin</td>
<td>486</td>
</tr>
<tr>
<td>Appendix 5.E: Calculation of Diversity Index</td>
<td>490</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.5-1. The Energy Information Administration 2011 and 2014 estimates of the potential of recoverable oil in source rock in the United States 11

Figure 1.5-2. The approximate geographic footprint of those parts of the Monterey Formation in the oil and gas window ... 12

Figure 1.5-3. Population density within 2,000 m (6,562 ft) of currently active oil production wells and currently active wells that have been stimulated 14

Figure 1.5-4. Growth in the number of wells operating over time in the Cahn pool in the Lost Hills field, one of the two pools in the field where hydraulic fracturing enables production .. 15

Figure 1.5-5. Percolation pits in Kern County used for produced water disposal 16

Figure 1.5-6. Location of percolation pits in the Central Valley and Central Coast used for produced water disposal .. 18

Figure 1.5-7. Produced water used for irrigation in Cawelo water district 19

Figure 1.5-8. A map of the Elk Hills field in the San Joaquin Basin showing the location of wells that have probably been hydraulically fractured................................. 21

Figure 1.5-9. Shallow fracturing locations and groundwater quality in the San Joaquin and Los Angeles Basins ... 23

Figure 1.5-10. Depths of groundwater total dissolved solids (TDS) in mg/L in five oil fields in the Los Angeles Basin .. 24

Figure 2.2-2. Map of abandoned offshore production facilities 31

Figure 2.3-1. Offshore oil seep locations .. 33

Figure 2.3-2. Summerland offshore oil development circa 1900 33

Figure 2.3-4. Platform Hazel (1958) .. 35

Figure 2.3-5. Offshore Artificial Islands. (a) Belmont Island (1954) - first offshore island. (McGuffee, 2002); (b) Rincon Island and causeway (1958) 35
Figure 2.3-6. (a) Grissom Island (1967) – one of the THUMS islands. (The Atlantic Photo, 2014); (b) Platform Hogan (1967) – first platform installed in federal waters. (Carpenter, 2011).

Figure 2.3-7. A view of Santa Barbara Channel with the location of platform “A” during the 1969 well blowout including the extent of the oil spill.

Figure 2.3-8. Platform Heritage (1989) – the most recent platform installed in federal waters.

Figure 2.4-1. Provinces and sedimentary basins in and along the Pacific Coast.

Figure 2.4-2. Stratigraphic column of the Santa Barbara-Ventura Basin showing formation thickness ranges (ft) and source rock and reservoir rock hydrocarbon classifications.

Figure 2.4-3. Operating oil fields and production facilities in the Santa Barbara and Santa Maria Basins showing faults and geologic trends.

Figure 2.4-4. Stratigraphic column of the Santa Maria Basin showing source rock and reservoir rock hydrocarbon classifications.

Figure 2.4-5. Partington and Santa Maria Basins.

Figure 2.4-6. Offshore Los Angeles – Santa Monica – San Pedro Basins stratigraphy.

Figure 2.4-7. Operating oil fields and production facilities in the offshore Los Angeles Basin showing faults.

Figure 2.5-1. Well profile for #SA-16 extended reach well drilled from Platform Heritage into the Sacate oil field.

Figure 2.5-3. Fluids handling for offshore facilities in State waters.

Figure 2.6-1. Correlation between oil production and CO₂eq. emissions.

Figure 2.7-1. Young-of-the-Year Rockfish densities at Platform Hidalgo and North Reef.

Figure 2.7-2. Growth rate comparison for Platform Gilda and Naples Reef in 1999.

Figure 2.7-3. Locations where fish production rates have been quantified.

Figure 2.7-4. Fish mass production rates at platforms.
Figure 2.7-5. Densities of benthic organisms as a function of distance from the Carpinteria produced water outfall...87

Figure 2.7-6. Variations in mussel tissue growth rates with distance from the Carpinteria outfall for two species, a) M. californianus; and b) M. edulis87

Figure 2.7-7. Locations for samples to investigate atresia in the Pacific sanddab.............88

Figure 2.7-8. Sites investigated for PAH contamination...89

Figure 2.7-9. Impacts of produced water concentration on the fraction of W. subtorquata larvae still swimming after 15 and 75 minutes ...92

Figure 2.7-10. Effects of produced water concentration on various exposure scenarios for the development of embryos to the pluteus (larval) stage after 48 hours93

Figure 2.7-11. The effects of 1% produced water exposure scenarios on development to the pluteus stage as a function of time (Krause et al., 1992).93

Figure 2.7-12. Southern California air basins and counties...99

Figure 3.3-1. Thermal transformation of kerogen to oil and gas, depicting the depths of the oil and gas windows ...116

Figure 3.3-2. Neogene sedimentary basins in and along the coastal margins of California...119

Figure 3.3-3. Example of a hypothetical petroleum system showing, cross section, and timeline for system formation...121

Figure 3.3-4. Schematic of a horizontal well with multi-stage hydraulic fractures superimposed on a road cut in the Eagle Ford Formation, west Texas128

Figure 3.3-5. Structure map showing depth to top and initial gas oil ratio of wells producing from the Eagle Ford Formation as of October 2014.........................129

Figure 3.3-6. Texas Eagle Ford drilling permits issued by the Texas Railroad Commission between 2008 and November 2014..130

Figure 3.3-7. Extent of potential Monterey source rock in the six major oil-producing basins in California ..148

Figure 3.4-1. Oil fields, well density as of 2014, and potential Monterey source rock in California...151
Figure 3.4-2. Pipelines for transport of oil and gas in California overlaid with potential Monterey source rock ...153

Figure 3.4-3. Potential Monterey source rock overlaid with known locations of oil and gas wastewater evaporation-percolation ponds in the state, and oil and gas field administrative boundaries ...156

Figure 3.4-4. A view of the Salinas River near San Ardo, with the San Ardo oilfield in the background ..159

Figure 3.4-5. Surface water features overlying the Monterey source rock ...160

Figure 3.4-6. Maps of groundwater basins (or alluvial aquifers) overlying the Monterey source rock ...166

Figure 3.4-7. Density of water wells in Ventura, Santa Maria, Cuyama, San Joaquin and Salinas Basins, and footprint of potential Monterey source rock168

Figure 3.4-8. Density of water wells in the Los Angeles Basin and footprint of potential Monterey source rock ...169

Figure 3.4-9. Water supplier service areas that directly overlie or are within 5 km of the Monterey source rock ..172

Figure 3.4-10. Spatial alignment between mature Monterey source rock (red) and air districts with PM$_{2.5}$ and ozone non-attainment ...174

Figure 3.4-11. Factors influencing the potential for induced seismicity in the vicinity of Monterey source rock in the San Joaquin and Cuyama Basins177

Figure 3.4-12. Factors influencing the potential for induced seismicity in the vicinity of Monterey source rock in the Los Angeles Basin ...178

Figure 3.4-13. Factors influencing the potential for induced seismicity in the vicinity of Monterey source rock in the Santa Barbara-Ventura Basin ...179

Figure 3.4-14. Factors influencing the potential for induced seismicity in the vicinity of Monterey source rock in the Santa Maria Basin ...180

Figure 3.4-15. Factors influencing the potential for induced seismicity in the vicinity of Monterey source rock in the Salinas Basin ...181

Figure 3.4-16. Overlay of potential Monterey source rock and land use184
Figure 3.4-17. Overlay of potential Monterey source rock with public lands, conservation lands and easements ...185

Figure 3.4-18. Overlay of potential Monterey source rock and federally-designated critical habitat ...187

Figure 3.4-19. Overlay of potential Monterey source rock and San Joaquin kit fox habitat suitability ...189

Figure 4.2-1. Numbers of wildcat exploration well drilled as a function of time in the Los Angeles Basin ..203

Figure 4.2-2. Graph showing onshore production of crude oil from reserves in the Los Angeles Basin between 1977 and 2015 ...204

Figure 4.2-3. Relative hydrocarbon concentration by basin ...205

Figure 4.2-4. Map showing shaded relief topography and named oil fields of the Los Angeles Basin ..206

Figure 4.2-5. Map showing shaded relief topography of the Los Angeles Basin with oil fields shown ...209

Figure 4.3-1. Ozone attainment by county in California ..220

Figure 4.3-2. PM$_{2.5}$ attainment by county in the South Coast Air Basin on California ...221

Figure 4.3-3. All active oil production wells in the South Coast Air Basin with those that are stimulated shown in red ...241

Figure 4.3-4. Density of active oil and gas well counts in the South Coast Air Basin242

Figure 4.3-5. Population density within 2,000 m (6,562 feet) of currently active oil production wells and currently active wells that have been stimulated243

Figure 4.3-6.A and 4.3-6.B. Proportion of demographic characteristics at studied geographic distance from (A) all active oil and gas wells; and (B) stimulated wells compared to the control (areas beyond 2,000 meter buffer distance)247

Figure 4.3-7. Coastal Plain of Los Angeles Groundwater Basin as defined by Department of Water Resources ...249

Figure 4.3-8. Dissolved-solids concentration, measurable tritium activity, and carbon-14 activity in ground water...250
Figure 4.3-9. Depth in meters (and feet) to the top of the hydraulically fractured interval in each well in Volume I, Appendix M, with a wellhead within 1 km (0.6 mi.) laterally of a water supply well or a water well with no purpose stated........253

Figure 4.3-10. Depth separation between the base of each water well and the top of each well interval hydraulically fractured for wells with well heads within 1 km (0.6 mi.) of each other...254

Figure 4.3-11. Depth of 3,000 mg/L TDS and data bracketing the depth of 10,000 mg/L TDS in each field with the hydraulically fractured wells selected for study......256

Figure 5.3-1. Oil fields assessed by Tennyson et al. (2012) for the remaining recoverable volume of oil ...271

Figure 5.3-2. Oil fields containing one or more pools with where hydraulic fracturing has been conducted...273

Figure 5.3-3. The location of wells open to the two pools in the Lost Hills field where most to all wells are estimated to have been hydraulically fractured........274

Figure 5.3-4. Wells in operation in the Etchegoin pool of the Lost Hills field in different years..275

Figure 5.3-5. Wells in operation in the Cahn pool of the Lost Hills field in different years ..276

Figure 5.3-6. Lease study area in the Cahn pool of the Lost Hills field...........277

Figure 5.3-7. Scatter Plot depicting the relationship between annual equivalent oil production per area and well density across the study leases in the Cahn pool of the Lost Hills field...278

Figure 5.3-8. Wells in operation in the Pyramid Hill-Vedder pool of the Mount Poso field in different years..280

Figure 5.4-1. Produced low-salinity water disposed by injection in each field along with hydraulic fracture-enabled EOR demand for supplied low-salinity water in 2013286

Figure 5.4-2. Minimum total dissolved solids concentration from GeoTracker GAMA in 5 km by 5 km (3 mi. by 3 mi.) square areas in the southern San Joaquin Basin as of October 14, 2014 ..289

Figure 5.4-3. Comparison of potential hydraulic fracturing fluid constituent upper limit concentrations in produced water ..293
List of Figures

Figure 5.4-4. Percentage of water disposal wells in each field undergoing review by DOGGR for appropriateness of its permitting relative to the quality of the groundwater in the injection zone ... 298

Figure 5.4-5. Minimum total dissolved solids concentration from GeoTracker GAMA in 5 km by 5 km (3 mi.by 3 mi.) square areas in the southern San Joaquin Basin as of October 14, 2014 ... 304

Figure 5.4-6. Representation of vertical fracturing from vertical wells in the diatomite in the South Belridge field .. 306

Figure 5.4-8. Fault densities for the four fields in the western San Joaquin Basin where 85% of the hydraulic fracturing in the state occurs .. 316

Figure 5.5-1. Greenhouse pollution, as carbon intensity (CI), from producing and transporting a unit of oil from California fields to a refinery (CARB, 2014) versus oil production in 2013 from DOGGR ... 323

Figure 5.6-1. Study area for analysis of population and households in proximity to hydraulically fractured wells and all active wells .. 325

Figure 5.6-2. Number of oil wells in the McClure pool in proximity to a location in the town of Shafter ... 328

Figure 5.7-1. Fragmentation. a) Edge effects: a comparison of five shapes with low to high edge effects.. 330

Figure 5.7-2. Land use categories and fragmentation in six oil fields in the San Joaquin Basin with the greatest number of hydraulic fractures ... 333

Figure 5.7-3. Corridors between high-density oil developments in the southwestern San Joaquin Valley ... 335

Figure 3.A-1. Cuyama Basin and associated oil fields ... 443

Figure 3.A-2. Burial history model for the American Petrofina Central Core Hole No. 1 Redrill .. 444

Figure 3.A-3. Map of the Los Angeles Basin with outlines of producing oil fields 446

Figure 3.A-4. Salinas Basin and associated oil fields ... 448

Figure 3.A-5. Distribution and estimated active source area of the Moreno Formation in the San Joaquin Basin .. 450
Figure 3.A-6. Distribution and estimated active source area of the Kreyenhagen in the San Joaquin Basin
...451

Figure 3.A-7. Distribution and estimated active source area of the Tumey in the San Joaquin Basin
...452

Figure 3.A-8. Distribution and estimated active source area of the Monterey in the oil window in the San Joaquin Basin
...453

Figure 3.A-9. Santa Maria Basin and producing oil fields ..455

Figure 3.A-10. North-South cross section through the Santa Maria Basin.........................456

Figure 3.A-11. The Ventura Basin and producing oil fields ..457

Figure 3.B-1. Geologic Time Scale ...461

Figure 3.D-1. Surface water features overlying the Monterey source rock.......................468

Figure 4.A-1. Total human population numbers ...475

Figure 5.C-1. Distribution of drinking water concentration goals, maximum concentration limits for drinking water, and potential hydraulic fracturing fluid constituent upper-limit concentrations ..485
List of Tables

Table 1.1-1. Well stimulation technologies included in Senate Bill 4 .. 2

Table 2.4-1. Production and resource estimates for currently producing fields in the Santa Barbara Basin in 2013 .. 46

Table 2.4-2. Santa Barbara Basin Reservoir characteristics for some currently producing reservoirs .. 47

Table 2.4-3. Production and resource estimates for currently producing fields in the Santa Maria Basin in 2013 ... 49

Table 2.4-4. Santa Maria Basin Reservoir characteristics for some currently producing reservoirs .. 50

Table 2.4-5. Production and resource estimates for currently producing fields in the offshore Los Angeles Basin in 2013 .. 54

Table 2.4-6. Offshore Los Angeles Basin Reservoir characteristics for some currently producing reservoirs .. 55

Table 2.5-1. Oil production facilities in Federal waters ... 58

Table 2.5-2. Hydraulic fracturing in Federal offshore waters ... 61

Table 2.5-3. Matrix acidizing in Federal offshore waters ... 62

Table 2.5-4. Oil production facilities in State waters ... 65

Table 2.6-1. NPDES produced water limits for all platforms; constituent sampling requirements and concentration limits for some platforms .. 70

Table 2.6-2. NPDES constituent concentration limits for platforms for which limits were not specified in Table 2.6-1 ... 71

Table 2.6-3. Discharge monitoring report status ... 73

Table 2.6-4. DMR values for produced water discharge and constituent concentrations. 74

Table 2.6-5. Offshore California spills in federal waters from oil and gas exploration and production .. 75
List of Tables

Table 2.6-6. Criteria pollutant emissions (metric tons (lbs))78

Table 2.6-7. Toxic air pollutant emissions (kg/yr (lbs/yr))..78

Table 2.6-8. Oil and gas production values for offshore regions in 2013 and GHG (CO₂eq.) emission estimates ...80

Table 2.6-9. Oil and gas production values for California oil and gas production in 2012 and GHG (CO₂eq.) emission estimates ..81

Table 2.7-1. Pacific sanddab reproductive characteristics at two platform and two natural sites ...88

Table 2.7-2. Numbers of fish contaminated (with percent of total sampled in parentheses) beyond toxicity threshold ...91

Table 2.7-3. Hydraulic fracturing fluid composition ...96

Table 2.7-4. Matrix acidizing fluid composition ..97

Table 2.7-5. Offshore oil and gas production criteria pollutant emissions for 2012 compared with overall air basin emissions, (metric tons (lbs)) a) South Central Coast Air Basin; b) South Coast Air Basin. (CARB, 2015a)99

Table 3.3-1. Comparison of source rock and conventional reservoirs123

Table 3.3-2. Summary of seven characteristics of productive source rocks, the status of data availability on the Monterey Formation, and our evaluation of whether large portions of the Monterey are likely to display this characteristic132

Table 3.3-3. Comparison of model parameters for the 2011 U.S. EIA/INTEK and 2014 U.S. EIA estimates of technically recoverable oil from the “Monterey/Santos play.” ...138

Table 3.3-4. Potential source rocks (shales rich in total organic carbon)145

Table 3.3-5. Characteristics of Monterey source rock in each of the six major oil-producing basins in California ...147

Table 3.4-1. Percentage of potential Monterey source rock footprint; rows show portion in the brownfield category (defined as at least one well per square kilometer), and greenfield category (defined as fewer than one well per square kilometer) ...151
Table 3.4-2. Area of potential Monterey source rock footprint by county. New and active wells from DOGGR All Wells database as of March 2014 ..152

Table 3.4-3. Length of streams, rivers, and canals overlying the Monterey source rock, by oil basin ...158

Table 3.4-4. Surface water bodies (lakes, ponds, and reservoirs) that overlie the Monterey source rock ..158

Table 3.4-5. Area of groundwater basins overlapping with Monterey source rock oil windows and their 5 km (3 mi) buffer, in square kilometers162

Table 3.4-6. Approximate number of water wells overlying the Monterey source rock and 5 km (3 mi) buffer zone, by oil basin ..170

Table 3.4-7. Approximate number of water wells overlying the Monterey source rock and 5 km (3 mi) buffer zone, by county ...170

Table 3.4-8. Water suppliers that directly overlie or are within 5 km (3 mi) of the Monterey source rock and their population served ..171

Table 3.4-9. National Vegetation Classification category overlapping with potential Monterey source rock ..184

Table 3.4-10. Proportion of potential Monterey Source Rock that is public land or conservation land and easements compared with other ownership types.186

Table 3.4-11. Overlap of potential Monterey source rock with U.S. Fish and Wildlife Service designated critical habitat for threatened and endangered species188

Table 3.4-12. Overlap of San Joaquin kit fox habitat suitability with potential Monterey source rock ..189

Table 4.3-1. Total emissions in 2012 of criteria air pollutants and ROGs in the South Coast Region from all sources (tones/d) ...223

Table 4.3-2. Total emissions in 2010 of selected TACs in the South Coast Region from all sources (tonnes/y) ...224

Table 4.3-3. Contribution of upstream oil and gas sources to criteria pollutants and ROGs emissions in South Coast Region, data for 2012 ...225

Table 4.3-4. Contribution of upstream oil and gas sources to TAC emissions in South Coast Region ...226
Table 4.3-5. Pools in South Coast Region determined to be facilitated or enabled by hydraulic fracturing.

Table 4.3-6. Fraction of South Coast total criteria and TAC emissions from well stimulation facilitated or enabled pools.

Table 4.3-7. Fraction of South Coast total toxic air contaminant emissions from well stimulation facilitated or enabled pools.

Table 4.3-9. Published values of intake fraction relevant to the well stimulation-enabled oil and gas development emissions in the South Coast Air Basin.

Table 4.3-10. Numbers of all currently active wells and the proportion that are supported by hydraulic fracturing, frac-packing, or high-rate gravel packing (HRGP) in the Los Angeles Basin by oil field.

Table 4.3-11. New wells or wells going into first production and the proportion that are hydraulically fractured, frac-packed, or high-rate gravel packed (HRGP).

Table 4.3-12. Proximity of human populations and sensitive human receptors to active oil wells in the South Coast Air Basin.

Table 4.3-13. Proximity of human populations and sensitive human receptors to stimulated wells in the South Coast Air Basin.

Table 4.3-14. Groundwater TDS data compared to the depth to the top of select hydraulic fracturing well intervals.

Table 5.4-1. Use and potential use of low-salinity water for EOR in 2013 in pools where most to all wells are hydraulically fractured.

Table 5.4-2. The estimated annual volume of high-quality water demand for hydraulic fracturing and low-salinity water demand for hydraulic-fracturing-enabled EOR by water resources planning area in 2013.

Table 5.4-3. Estimated number of hydraulic fracturing operations per year per pool in fields with more than 100 estimated operations, and percentage of produced water from those pools discharged to evaporation-percolation pits for disposal in 2013.

Table 5.4-4. Estimated number of hydraulic fracturing operations and volume of water used per year per field with more than 100 estimated operations, water volume produced from each field in 2013, and dilution factor.
List of Tables

Table 5.4-5. Estimated number of hydraulic fracturing operations per year per pool in fields with more than 100 estimated operations, and percentage of produced water from those pools injected in 2013...296

Table 5.4-6. Predominantly hydraulically fractured pools in the San Joaquin Basin302

Table 5.5-1. Anthropogenic emissions of criteria air pollutants and reactive organic gases in Kern County ..319

Table 5.5-2. Emissions of toxic air contaminants from all sources in Kern County (San Joaquin Basin), 2010. Data from California Toxics Inventory319

Table 5.5-3. Emissions of criteria air pollutants from oil and gas production in metric tonnes/day, and these emissions as a percent of total emissions in Kern County in 2012 ..320

Table 5.5-4. Emissions of toxic air contaminants from oil and gas production in kg/yr, and these emissions as a percent of total emissions in Kern County in 2010321

Table 5.5-5. Percent of criteria air pollutant and reactive organic gases emissions from hydraulic fracturing enabled production in Kern County in 2012322

Table 5.5-6. Toxic air contaminant emissions from hydraulic fracturing enabled production as a percent of total emissions in Kern County in 2010322

Table 5.6-1. Total and percent of population, population by age, Hispanic, and Non-Hispanic minority in proximity to hydraulically fractured (HF) wells and all wells in the study area..327

Table 2.A-1. BSEE FOIA documents on well stimulation offshore California440

Table 3.C-1. List of groundwater basins overlying oil Monterey source rock oil basins. Basins in italics overlie the 5 km(3.11 mi) buffer area only.................................463

Table 3.E-1. National Vegetation Classification category overlapping with potential Monterey source rock, broken out by county...469

Table 4.A-1. Data Sources ..471

Table 4.A-2. Three letter DOGGR code representing the well status (first letter in code), and the well type (last two letters in code)..472

Table 4.A-3. Definition of well status per DOGGR..473
Table 5.D-1. Number and percent of facilities with more sensitive population members in proximity to hydraulically fractured wells in the San Joaquin Valley Air Basin (SJVAB) ... 486

Table 5.D-2. Population over 25 years of age with less than a high school education in proximity to hydraulically fractured and all active wells in the study area (based on the 2010 Census data at the block group level). 487

Table 5.D-3. Employed and unemployed population in proximity to hydraulically fractured and all active wells in the study area (based on the 2013 Census data at the block group level) .. 488

Table 5.D-4. Total, limited English and impoverished households in proximity to hydraulically fractured and all active wells in the study area (households with limited English and below the food stamp income threshold based on the 2010 Census data at the block group scale, and households with income below the poverty line based on the 2013 Census data block group level). 489
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALA</td>
<td>American Lung Association</td>
</tr>
<tr>
<td>APCHH</td>
<td>American Petrofina Central Core Hole</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Treatment Economically Achievable</td>
</tr>
<tr>
<td>bbl</td>
<td>Oil Barrel</td>
</tr>
<tr>
<td>bble</td>
<td>Oil Barrel Equivalent Energy</td>
</tr>
<tr>
<td>BBO</td>
<td>Billion Barrels of Oil</td>
</tr>
<tr>
<td>BCT</td>
<td>Best Conventional Pollutant Control Technology</td>
</tr>
<tr>
<td>BLS</td>
<td>(U.S.) Bureau of Labor Statistics</td>
</tr>
<tr>
<td>BOE</td>
<td>Barrels of Oil Equivalent</td>
</tr>
<tr>
<td>BOEM</td>
<td>Bureau of Ocean Energy Management</td>
</tr>
<tr>
<td>BSEE</td>
<td>Bureau of Safety and Environmental Enforcement</td>
</tr>
<tr>
<td>BTEX</td>
<td>Benzene, Toluene, Ethylbenzene, and Xylene</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCC</td>
<td>California Coastal Commission</td>
</tr>
<tr>
<td>CCST</td>
<td>California Council on Science and Technology</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CER</td>
<td>Categorical Exclusion Reviews</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CI</td>
<td>Carbon Intensity</td>
</tr>
<tr>
<td>CMIT</td>
<td>Biocide 5-Chloro-2-methyl-3(2H)-isothiazolone</td>
</tr>
<tr>
<td>CSLC</td>
<td>California State Land Commission</td>
</tr>
<tr>
<td>CT</td>
<td>Cristobalite and Tridymite</td>
</tr>
<tr>
<td>CVRWQCB</td>
<td>Central Valley Regional Water Quality Control Board</td>
</tr>
<tr>
<td>DG</td>
<td>Distributed Petroleum-Powered Generation</td>
</tr>
<tr>
<td>DMR</td>
<td>Discharge Monitoring Report</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DOGGR</td>
<td>(California) Division of Oil, Gas, and Geothermal Resources</td>
</tr>
<tr>
<td>DPH</td>
<td>Department of Public Health</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>EOR</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>FM</td>
<td>Fractured Monterey</td>
</tr>
<tr>
<td>FOIA</td>
<td>Freedom of Information Act</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>GAMA</td>
<td>Groundwater Ambient Monitoring & Assessment</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>GHS</td>
<td>Globally Harmonized System</td>
</tr>
</tbody>
</table>
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GOR</td>
<td>Gas-Oil Ratio</td>
</tr>
<tr>
<td>GSM</td>
<td>Gaviota-Sacate-Matilija</td>
</tr>
<tr>
<td>HAP</td>
<td>Hazardous Air Pollutant</td>
</tr>
<tr>
<td>HBACVs</td>
<td>Health-Based Air Concentration Values</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HF</td>
<td>Hydraulically Fractured</td>
</tr>
<tr>
<td>HLTHFAC</td>
<td>California Health Care Facility Dataset</td>
</tr>
<tr>
<td>HRGP</td>
<td>High-Rate Gravel Packs</td>
</tr>
<tr>
<td>ICIS/PCS</td>
<td>Integrated Compliance Information System and Permit Compliance System (database)</td>
</tr>
<tr>
<td>IF</td>
<td>Intake Fraction</td>
</tr>
<tr>
<td>IRIS</td>
<td>Integrated Risk Information System</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LBNL</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic Meter</td>
</tr>
<tr>
<td>m³e</td>
<td>Cubic Meter of Oil Equivalent Energy</td>
</tr>
<tr>
<td>mi.</td>
<td>Mile</td>
</tr>
<tr>
<td>MMS</td>
<td>Minerals Management Service</td>
</tr>
<tr>
<td>MRLs</td>
<td>Minimal Risk Levels</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OCS</td>
<td>(Federal) Outer Continental Shelf</td>
</tr>
<tr>
<td>OEHHA</td>
<td>Office of Environmental Health Hazard Assessment</td>
</tr>
<tr>
<td>OOIP</td>
<td>Original Oil In Place</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OSPAR</td>
<td>Oslo and Paris Convention</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PLSS</td>
<td>Public Land Survey System</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Particulates Smaller than 10 Microns</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Particulates Smaller than 2.5 Microns</td>
</tr>
<tr>
<td>PPB</td>
<td>Parts Per Billion</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>PR</td>
<td>Pico-Repetto</td>
</tr>
<tr>
<td>REL</td>
<td>Reference Exposure Levels</td>
</tr>
<tr>
<td>RFC</td>
<td>Reference Concentrations</td>
</tr>
<tr>
<td>Rfd</td>
<td>Reference Doses</td>
</tr>
<tr>
<td>RMT-SAV</td>
<td>Rincon-Monterey-Topanga-Sespe-Alegria-Vaqueros</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>ROG</td>
<td>Reactive Organic Gases</td>
</tr>
<tr>
<td>SB 1281</td>
<td>Senate Bill 1281</td>
</tr>
</tbody>
</table>
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB 4</td>
<td>Senate Bill 4</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SCEDC</td>
<td>Southern California Earthquake Data Center</td>
</tr>
<tr>
<td>SIC</td>
<td>Standard Industry Classification code</td>
</tr>
<tr>
<td>SJVAB</td>
<td>San Joaquin Valley Air Basin</td>
</tr>
<tr>
<td>SJVUAPCD</td>
<td>San Joaquin Valley Unified Air Pollution Control District</td>
</tr>
<tr>
<td>SoCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SOₓ</td>
<td>Sulfur Oxides</td>
</tr>
<tr>
<td>SWRCB</td>
<td>(California) State Water Resources Control Board</td>
</tr>
<tr>
<td>TAC</td>
<td>Toxic Air Contaminant</td>
</tr>
<tr>
<td>TCW</td>
<td>Treatment, Completion, and Workover</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>THUMS</td>
<td>Texaco, Humble, Union, Mobil, and Shell (a set of artificial islands)</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TOG</td>
<td>Total Organic Gases</td>
</tr>
<tr>
<td>TR</td>
<td>Transformation Ratio</td>
</tr>
<tr>
<td>TRRC</td>
<td>Texas Railroad Commission</td>
</tr>
<tr>
<td>TVD</td>
<td>True Vertical Depth</td>
</tr>
<tr>
<td>U.S. EIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>UIC</td>
<td>Underground Injection Control</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USDW</td>
<td>Underground Source of Drinking Water</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>USQFF</td>
<td>U.S. Quaternary Fault and Fold Database</td>
</tr>
<tr>
<td>VCAPCD</td>
<td>Ventura County Air Pollution Control District</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WDR</td>
<td>Waste Discharge Requirements</td>
</tr>
<tr>
<td>WET</td>
<td>Whole Effluent Toxicity</td>
</tr>
<tr>
<td>µg/m³</td>
<td>Micrograms per Cubic Meter</td>
</tr>
</tbody>
</table>