BioInitiative Report:
A Rationale for a Biologically-based Public Exposure Standard
for Electromagnetic Fields (ELF and RF)

Steps to the clinic with ELF EMF
Ash Madkan, Martin Blank, Edward Elson, Kuo-Chen Chou, Matthew S. Geddis,
Copyright@2009. Openly accessible at http://www.scirp.org/journal/NS

Author's Profile: Reba Goodman, PhD Professor Emeritus Clinical
Pathology.Special Lecturer in Pathology, Columbia University, NewYork.
rmg5@columbia.edu

Reba: I've been doing research on controversial scientific problems all my
professional life. Independent scientists have an especially high burden when they
do scientific investigations into the big questions of biology that sometimes produce
results that upset established paradigms. EMF has been one of those areas. I think
we have an obligation to translate our scientific findings into useful information for
public health, even if we do not yet have all the answers. Science is never done.
Certainty is never static. This paper helps to highlight that EMF can be both a
harmful exposure, and a healing or therapeutic exposure, depending on how it is
delivered to the body. In order to understand the biological consequences of EMF
exposure, one must know whether the effect is cumulative, whether compensatory
responses result, and when homeostasis will break down. Such findings will have
great potential for use in translation medicine at the clinic level without being
invasive.

Abstract

There have been many models to identify and analyze low-frequency motions in
protein and DNA molecules. It has been successfully used to simulate various low-
frequency collective motions in protein and DNA molecules. Low- frequency
motions in biomacromolecules originate from two common and intrinsic
characteristics; i.e., they contain 1) a series of weak bonds, such as hydrogen
bonds, and 2) a substantial mass distributed over the region of these weak bonds.
Many biological functions and dynamic mechanisms, including cooperative effects
have been reported. In this regard, some phenomenological theories were estab-
lished. However, differences in experimental outcomes are expected since many
factors could influence the outcome of experiments in EMF research. Any effect of
EMF has to depend on the energy absorbed by a biological organism and on how
the energy is delivered in space and time. Frequency, intensity, exposure duration,
and the number of exposure episodes can affect the response, and these factors
can inter- act with each other to produce different effects. In addition, in order to
understand the biological consequence of EMF exposure, one must know whether
the effect is cumulative, whether compensatory responses result, and when
homeostasis will break down. Such findings will have great potential for use in
translation medicine at the clinical level without being invasive.

Keywords: Electromagnetic fields; Hsp70; Interaction mechanisms; Low-frequency
collective motion